Advertisement

CD4+ T Cells Cooperate With Macrophages for Specific Elimination of MHC Class II-Negative Cancer Cells

  • Alexandre Corthay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)

Abstract

Our present knowledge of how T cells eliminate cancer is mainly based on memory immune responses investigated with vaccinated mice1,2. In-vivo depletion studies with anti-CD4 monoclonal antibodies (mAb) have revealed that the antitumor immunity conferred by prophylactic vaccination is usually CD4+ T cell dependent. CD4+ T cells were required for vaccination-induced immunity against the B16 melanoma3, 4, 5, against the Mc51.9 fibrosarcoma6, against the J558 plasmacytoma7, and against the A20 lymphoma7.

Keywords

Myeloma Cell SCID Mouse Antitumor Immunity Tumor Rejection Tumor Eradication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. 1.
    L. Gross. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326–333 (1943).Google Scholar
  2. 2.
    R.G. Lynch, R.J. Graff, S. Sirisinha, E.S. Simms and H.N. Eisen. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA 69:1540–1544 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Dranoff, E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll and R.C. Mulligan. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    H.I. Levitsky, A. Lazenby, R.J. Hayashi and D.M. Pardoll. In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J Exp Med 179:1215–1224 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Hung, R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll and H. Levitsky. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    Z. Qin and T. Blankenstei. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by non-hematopoietic cells. Immunity 12:677–686 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Liu, J. Idoyaga, A. Charalambous, S. Fujii, A. Bonito, J. Mordoh, R. Wainstok, X.F. Bai, Y. Liu and R.M. Steinman. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202:1507–1516 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Fujiwara, M. Fukuzawa, T. Yoshioka, H. Nakajima and T. Hamaoka. The role of tumor-specific Lyt-1+2-T cells in eradicating tumor cells in vivo, I: lyt-1+2-T cells do not necessarily require recruitment of host’s cytotoxic T cell precursors for implementation of in vivo immunity. J Immunol 133:1671–1676 (1984).PubMedGoogle Scholar
  9. 9.
    B. Bogen, L. Munthe, A. Sollien, P. Hofgaard, H. Omholt, F. Dagnaes, Z. Dembic and G.F. Lauritzsen. Naive CD4+ T cells confer idiotype-specific tumor resistance in the absence of antibodies. Eur J Immunol 25:3079–3086 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Mumberg, P.A. Monach, S. Wanderling, M. Philip, A.Y. Toledano, R.D. Schreiber and H. Schreiber. CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA 96:8633–8638 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Fallarino, U. Grohmann, R. Bianchi, C. Vacca, M.C. Fioretti and P. Puccetti. Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 165:5495–5501 (2000).PubMedGoogle Scholar
  12. 12.
    Z. Dembic, K. Schenck and B. Bogen. Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proc Natl Acad Sci USA 97:2697–2702 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    Z. Dembic, J.A. Rottingen, J. Dellacasagrande, K. Schenck and B. Bogen. Phagocytic dendritic cells from myelomas activate tumor-specific T cells at a single cell level. Blood 97:2808–2814 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Ossendorp, E. Mengede, M. Camps, R. Filius and C.J. Melief. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    D.R. Surman, M.E. Dudley, W.W. Overwijk and N.P. Restifo. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 164:562–565 (2000).PubMedGoogle Scholar
  16. 16.
    F.G. Gao, V. Khammanivong, W.J. Liu, G.R. Leggatt, I.H. Frazer and G.J. Fernando. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441 (2002).PubMedGoogle Scholar
  17. 17.
    P.D. Greenberg, D.E. Kern and M.A. Cheever. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2-T cells: tumor eradication does not require participation of cytotoxic T cells. J Exp Med 161:1122–1134 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    C.M. Coughlin, K.E. Salhany, M.S. Gee, D.C. LaTemple, S. Kotenko, X. Ma, G. Gri, M. Wysocka, J.E. Kim, L. Liu, F. Liao, J.M. Farber, S. Pestka, G. Trinchieri and W.M. Lee. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9:25–34 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    P.D. Greenberg, M.A. Cheever and A. Fefer. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2-lymphocytes. J Exp Med 154:952–963 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Kahn, H. Sugawara, P. McGowan, K. Okuno, S. Nagoya, K.E. Hellstrom, I. Hellstrom and P. Greenberg. CD4+ T cell clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen. J Immunol 146:3235–3241 (1991).PubMedGoogle Scholar
  21. 21.
    T. Nishimura, K. Iwakabe, M. Sekimoto, Y. Ohmi, T. Yahata, M. Nakui, T. Sato, S. Habu, H. Tashiro, M. Sato and A. Ohta. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190:617–627 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    K.U. Lundin, P.O. Hofgaard, H. Omholt, L.A. Munthe, A. Corthay and B. Bogen. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood 102:605–612 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    F.M. Burnet. The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27 (1970).PubMedGoogle Scholar
  24. 24.
    D.H. Kaplan, V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L.J. Old and R.D. Schreiber. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    M.J. Smyth, K.Y. Thia, S.E. Street, E. Cretney, J.A. Trapani, M. Taniguchi, T. Kawano, S.B. Pelikan, N.Y. Crowe and D.I. Godfrey. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668 (2000).PubMedCrossRefGoogle Scholar
  26. 26.
    M.J. Smyth, K.Y. Thia, S.E. Street, D. MacGregor, D.I. Godfrey and J.A. Trapani. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old and R.D. Schreiber. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Girardi, D.E. Oppenheim, C.R. Steele, J.M. Lewis, E. Glusac, R. Filler, P. Hobby, B. Sutton, R.E. Tigelaar and A.C. Hayday. Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    S.E. Street, J.A. Trapani, D. MacGregor and M.J. Smyth. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Takeda, M.J. Smyth, E. Cretney, Y. Hayakawa, N. Kayagaki, H. Yagita and K. Okumura. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    R.A. Gatti and R.A. Good. Occurrence of malignancy in immunodeficiency diseases: a literature review. Cancer 28:89–98 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    S.A. Birkeland, H.H. Storm, L.U. Lamm, L. Barlow, I. Blohme, B. Forsberg, B. Eklund, O. Fjeldborg, M. Friedberg and L. Frodin. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 60:183–189 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Corthay, D.K. Skovseth, K.U. Lundin, E. Rosjo, H. Omholt, P.O. Hofgaard, G. Haraldsen and B. Bogen. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22:371–383 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    G.F. Lauritzsen, S. Weiss, Z. Dembic and B. Bogen. Naive idiotype-specific CD4+ T cells and immunosurveillance of B-cell tumors. Proc Natl Acad Sci USA 91:5700–5704 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    Z. Dembic, P.O. Hofgaard, H. Omholt and B. Bogen. Anti-class II antibodies, but not cytotoxic T-lymphocyte antigen 4-immunoglobulin hybrid molecules, prevent rejection of major histocompatibility complex class II-negative myeloma in T-cell receptor-transgenic mice. Scand J Immunol 60:143–152 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    H.K. Kleinman, M.L. McGarvey, J.R. Hassell, V.L. Star, F.B. Cannon, G.W. Laurie and G.R. Martin. Basement membrane complexes with biological activity. Biochemistry 25:312–318 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Bottazzi, N. Polentarutti, R. Acero, A. Balsari, D. Boraschi, P. Ghezzi, M. Salmona and A. Mantovani. Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    R.D. Schreiber, J.L. Pace, S.W. Russell, A. Altman and D.H. Katz. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol 131:826–832 (1983).PubMedGoogle Scholar
  39. 39.
    A. Mantovani, et al. A. Sica, S. Sozzani, P. Allavena, A. Vecchi and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Evans and P. Alexander. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature 228:620–622 (1970).PubMedCrossRefGoogle Scholar
  41. 41.
    R. Evans and P. Alexander. Mechanism of immunologically specific killing of tumour cells by macrophages. Nature 236:168–170 (1972).PubMedCrossRefGoogle Scholar
  42. 42.
    L. Bingle, N.J. Brown and C.E. Lewis. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265 (2002).PubMedCrossRefGoogle Scholar
  43. 43.
    J.W. Pollard. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78 (2004).PubMedCrossRefGoogle Scholar
  44. 44.
    K. Tsung, J.P. Dolan, Y.L. Tsung and J.A. Norton. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075 (2002).PubMedGoogle Scholar
  45. 45.
    C. Guiducci, A.P. Vicari, S. Sangaletti, G. Trinchieri and M.P. Colombo. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446 (2005).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexandre Corthay
    • 1
  1. 1.Institute of ImmunologyUniversity of Oslo and Rikshospitalet-Radiumhospitalet Medical CenterOsloNorway

Personalised recommendations