A Consideration of Leaping Locomotion as a Means of Predator Avoidance in Prosimian Primates

  • Robin Huw Crompton
  • William Irvin Sellers
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Predator pressure is normally very difficult to assess, and most reports tend to be anecdotal. However, it has been estimated that an annual predation rate of 25% may apply to Microcebus populations (Goodman et al., 1993). Such a rate, albeit for a particularly small prosimian, implies strong selective pressure in favor of adaptations that reduce predation, and it seems reasonable to assess adaptations with predation in mind. Predator avoidance by vigilance is usually seen as an attribute of social foragers (see, e.g., Terborgh & Janson, 1986), to which category many of the Lemuridae, and arguably some Indriidae and Lepilemuridae, belong. However, the small body size and nocturnality of those prosimians described as “solitary foragers” are often regarded as facilitating alternative predator avoidance strategy, crypsis (e.g., Clutton-Brock & Harvey, 1977; Stanford, 2002).


Predator Avoidance Sportive Lemur Solitary Forager Prosimian Primate Daily Movement Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, P. (1998). Vertical jumping in Galago senegalensis; the quest for an obligate mechanical power amplifier. Phil. Trans. Roy. Soc. Lond. B, 533: 1299–1308.Google Scholar
  2. Alexander, R. Mc N. (1981). Factors of safety in the structure of animals. Sci. Prog., 67: 109–130.PubMedGoogle Scholar
  3. Alexander, R. Mc N. (1995). Leg design and jumping technique for humans, other vertebrates and insects. Phil. Trans. Roy. Soc. Lond. B, 347: 235–248.CrossRefGoogle Scholar
  4. Alexander, R. Mc N. (2003). Principles of animal locomotion. Princeton, NJ: Princeton Univ. Press.Google Scholar
  5. Bartholomew, G.A., and Cary, G.R. (1954). Locomotion in pocket mice. J. Mammalogy, 35: 386–392.CrossRefGoogle Scholar
  6. Bearder, S.K. (1987). Lorises, bushbabies and tarsiers: Diverse societies in solitary foragers. In B.B. Smuts, D.L. Cheney, R.M. Seyfarth, R.W. Wrangham, and T.T. Struhsaker (Eds.), Primate societies (pp. 11–24). Chicago: Univ. of Chicago Press.Google Scholar
  7. Bennet-Clark, H.C. (1975). The energetics of the jump of the locust Schistocerca gregaria. J. Exp. Biol., 82: 105–121.Google Scholar
  8. Bennet-Clark, H.C. (1977). Scale effects in jumping animals. In T.J. Pedley (Ed.), Scale effects in animal locomotion (pp. 185–201), London: Academic Press.Google Scholar
  9. Bennet-Clark, H.C., and Lucey, E.C.A. (1967). The jump of the flea: A study of the energetics and a model of the mechanism. J. Exp. Biol., 47: 59–76.PubMedGoogle Scholar
  10. Clutton-Brock, T.H., and Harvey, P.H. (1977). Primate ecology and social organization. J. Zool., 183: 1–39.CrossRefGoogle Scholar
  11. Charles-Dominique, P. (1971). Eco-ethologie des prosimiens du Gabon. Biologica Gabonica, 7: 21–228.Google Scholar
  12. Charles-Dominique, P., and Hladik, C.M. (1971). Le Lepilemur du sud du Madagascar: Ecologie, alimentation et vie sociale. Terre et Vie, 25: 3–66.Google Scholar
  13. Crompton, R.H. (1980). Galago locomotion. Unpublished Doctoral thesis. Harvard University.Google Scholar
  14. Crompton, R.H. (1983). Age differences in locomotion of two subtropical Galaginae. Primates, 24: 241–259.CrossRefGoogle Scholar
  15. Crompton, R.H. (1984). Foraging, habitat structure and locomotion in two species of Galago. In P. Rodman and J. Cant, J. (Eds.), Adaptations for foraging in non-human primates (pp. 73–111). New York: Columbia Univ. Press.Google Scholar
  16. Crompton, R.H. (1989). Mechanisms for speciation in Galago and Tarsius. Hum Evol., 4: 105–116.CrossRefGoogle Scholar
  17. Crompton, R.H., and Andau, P.M. (1986). Locomotion and habitat utilization in free ranging Tarsius bancanus: A preliminary report. Primates, 27: 337–355.CrossRefGoogle Scholar
  18. Crompton, R.H., Sellers, W.I., and Günther, M.M. (1993). Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc. Roy. Soc. Lond., 254: 41–45.CrossRefGoogle Scholar
  19. Demes, B., and Günther, M.M. (1989). Biomechanics and allometric scaling in primate locomotion and morphology. Folia primatol., 52: 58–59.PubMedGoogle Scholar
  20. Demes, B., Jungers, W.L., Gross, T.S., and Fleagle, J.G. (1995). Kinetics of leaping primates: influence of substrate orientation and compliance. Am. J. Phys. Anthrop., 96: 419–429.PubMedCrossRefGoogle Scholar
  21. Demes, B., Fleagle, J.G., and Jungers, W.L. (1999). Takeoff and landing forces of leaping strepsirhine primates. J. Hum. Evol., 37: 279–292.PubMedCrossRefGoogle Scholar
  22. Demes, B., Franz, T.M., and Carlson, K.J. (2005). External forces on the limbs of jumping lemurs at takeoff and landing. Am. J. Phys. Anthrop., 128: 348–358.PubMedCrossRefGoogle Scholar
  23. Dollar, L. (1999). Preliminary report on the status, activity cycle, and ranging of Cryptoprocta ferox in the Malagasy rainforest, with implications for conservation. Small Carnivore Conservation, 20: 7–10.Google Scholar
  24. Fogden, M. (1974). A preliminary field-study of the western tarsier, Tarsius bancanus HORSFIELD. In R.D. Martin, G.A. Doyle, and A.C. Walker. (Eds.), Prosimian biology (pp. 151–165). Pittsburgh: Pittsburgh Univ. Press.Google Scholar
  25. Gans, C., and Parsons, T.S. (1966). On the origin of the jumping mechanism in frogs. Evolution, 20: 92–99.CrossRefGoogle Scholar
  26. Goodman, S.M., O’Connor, S., and Langrand, O. (1993). A review of predation on lemurs: Implications for the evolution of social behaviour in small, nocturnal primates. In P.M. Kappeler and J.U. Ganzhorn (Eds.), Lemur social systems and their ecological basis (pp. 51–67). New York: Plenum.Google Scholar
  27. Goszczynski, J. (1986). Locomotor activities of terrestrial predators and their consequences. Acta Theriol., 31: 79–95.Google Scholar
  28. Günther, M.M., Ishida, H., Kumakura, H., and Nakano, Y. (1991). The jump as a fast mode of locomotion in arboreal and terrestrial biotopes. Z. Morph. Anthrop., 78(3): 341–372.Google Scholar
  29. Gursky, S. (2005). Predator mobbing in Tarsius spectrum. Int. J. Primatol., 26(1): 207–221.CrossRefGoogle Scholar
  30. Gursky, S. (2002). Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia primatol., 73(1): 60–62.PubMedCrossRefGoogle Scholar
  31. Hall-Craggs, E.C.B. (1962). The jump of Galago senegalensis. Unpublished doctoral thesis. Univ. of London.Google Scholar
  32. Hall-Craggs, E.C.B. (1964). The jump of the bushbaby—A photographic analysis. Med. Biol. Ill., 14:170–174.Google Scholar
  33. Hall-Craggs, E.C.B. (1965). An analysis of the jump of the lesser galago (Galago senegalensis). J. Zool., 147:20–29.Google Scholar
  34. Hawkins, C.E. (1998). The behaviour and ecology of the fossa, Cryptoprocta ferox (Carnivora: Viverridae) in a dry deciduous forest in western Madagascar. Unpublished doctoral thesis. Univ. of Aberdeen.Google Scholar
  35. Hladik, C.M., and Charles-Dominique, P. (1974). The behaviour and ecology of the sportive lemur (Lepilemur mustelinus) in relation to its dietary peculiarities. In R.D. Martin, G.A. Doyle, and A.C. Walker (Eds.), Prosimian biology (pp. 23–37). Pittsburgh: Pittsburgh Univ. Press.Google Scholar
  36. Hladik, C.M. (1979). Diet and ecology of prosimians. In G.A. Doyle, R.D. Martin (Eds.), The study of prosimian behaviour (pp. 307–359). London: Academic Press.Google Scholar
  37. Jablonski, N.G., and Crompton, R.H. (1994). Feeding behavior, mastication and toothwear in the Western Tarsier, Tarsius bancanus. Int. J. Primatol., 15(1): 29–59.Google Scholar
  38. Karasov, W.H. (1981). Daily energy expenditure and the cost of activity in a free-living mammal. Oecologia, 51: 253–259.CrossRefGoogle Scholar
  39. Kenagy, G.J., and Hoyt, D.F. (1990). Speed and time energy budget for locomotion in golden-mantled ground squirrels. Ecology, 70:1834–1839.CrossRefGoogle Scholar
  40. Lima, S.L., and Dill, L.M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool., 68: 619–640.Google Scholar
  41. MacKinnon, J., and MacKinnon K (1980). The behavior of wild spectral tarsiers. Int. J. Primatol., 1: 361–379.Google Scholar
  42. Nagy, K.A., and Milton, K. (1979). Energy metabolism and food consumption by wild howler monkeys. Ecology, 60: 475–480.CrossRefGoogle Scholar
  43. Napier, J.R., and Walker, A.C. (1967). Vertical clinging and leaping—A newly recognized category of locomotor behaviour of primates. Folia Primatol., 6: 204–219.PubMedGoogle Scholar
  44. Nekaris, K.A.I. (2005). Foraging behaviour of the slender loris (Loris lydekkerianus lydekkerianus): Implications for theories of primate origins. J. Hum. Evol., 49: 289–300.PubMedCrossRefGoogle Scholar
  45. Niemitz, C. (1979). Results of a study on the western tarsier (Tarsius bancanus borneanus HORSFIELD 1821) in Sarawak. Sarawak Mus. J., 48: 171–228.Google Scholar
  46. Niemitz, C. (1979) Outline of the behavior of Tarsius bancanus. In G.A. Doyle, R.D. Martin (Eds.), The study of prosimian behavior. New York: Academic Press. (pp. 631–660)Google Scholar
  47. Niemitz, C. (1984a). Synecological relationships and feeding behaviour of the genus Tarsius. In C. Niemitz (Ed.), Biology of tarsiers (pp. 59–75). Stuttgart: Gustav Fischer.Google Scholar
  48. Niemitz, C. (1984b). Activity rhythms and use of space in semi-wild Bornean tarsiers, with remarks on wild spectral tarsiers. In C. Niemitz (Ed.) Biology of tarsiers (pp. 85–115). Stuttgart: Gustav Fischer.Google Scholar
  49. Norberg, U.M. (1985). Flying, gliding and soaring. In M. Hildebrand, D.M. Bramble, K. Liem, and D.B. Wake (Eds.) Functional vertebrate morphology (pp. 129–158). Cambridge, MA: Belknap.Google Scholar
  50. Norton, F.G.J. (1987). Advanced mathematics. London: Pan Books.Google Scholar
  51. Oxnard, C.E., Crompton, R.H., Liebermann, S.S. (1989). Animal lifestyles and anatomies: The case of the prosimian primates. Seattle: Washington. Univ. Press. Patel, E.R. (2005). Silky sifaka predation (Propithecus candidus) by a fossa (Cryptoprocta ferox). Lemur News, 10: 25–27.Google Scholar
  52. Peters, A., and Preuschoft, H. (1984). External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In C. Niemitz C. (Ed.), Biology of tarsiers (pp. 227–255). Stuttgart: Gustav Fischer.Google Scholar
  53. Preuschoft, H., Günther M.M., and Christian, A. (1998). Size dependence in prosimian locomotion and its implications for the distribution of body mass. Folia primatol., 69: 60–81.PubMedCrossRefGoogle Scholar
  54. Russell, R. (1977). The behaviour, ecology and environmental physiology of a nocturnal primate, Lepilemur mustelinus. Unpublished doctoral thesis. Duke Univ.Google Scholar
  55. Schmid, J., and Ganzhorn, J. (1996). Resting metabolic rates of Lepilemur mustelinus ruficaudatus. Am. J. Primatol., 38: 169–174.CrossRefGoogle Scholar
  56. Schmidt-Neilsen, K. (1990). Animal physiology: Adaptation and environment (ed. 4). Cambridge: Cambridge Univ. Press.Google Scholar
  57. Sellers, W.I., Cain, G.M., Wang, W.J., and Crompton, R.H. (2005). Stride lengths, speed and energy costs in walking of Australopithecus afarensis: Using evolutionary robotics to predict locomotion of early human ancestors. J. Roy. Soc. Interface, 2: 431–442.CrossRefGoogle Scholar
  58. Stanford, C.B. (2002). Avoiding predators: Expectations and evidence in primate antipredator behavior. Int. J. Primatol., 23: 741–757.CrossRefGoogle Scholar
  59. Sussman R. (1999). Primate ecology and social structure, vol 1: Lemurs, lorises and tarsiers. New York: Pearson Custom Publishing.Google Scholar
  60. Terborgh, J., and Janson, C.H. (1986). The socioecology of primate groups. Annu. Rev. Ecol. Syst., 17: 111–135.CrossRefGoogle Scholar
  61. Walker, A. (1969). The locomotion of the lorises with special reference to the potto. E. Afr. Wildl.J., 7: 1–5.Google Scholar
  62. Walker, A. (1979). Prosimian locomotor behaviour. In G.A. Doyle, R.D. Martin (Eds.), The study of prosimian behaviour (pp. 543–566). London: Academic Press.Google Scholar
  63. Walton, M., and Anderson, B.D. (1988). The aerobic cost of saltatory locomotion in the Fowler’s toad (Bufo woodhousei fowleri). J. Exp. Biol., 136: 273–288.PubMedGoogle Scholar
  64. Warren, R.D., and Crompton, R.H. (1997). Locomotor ecology of Lepilemur edwardsi and Avahi occidentalis. Am. J. Phys. Anthrop., 104: 471–486.PubMedCrossRefGoogle Scholar
  65. Warren, R.D., and Crompton, R.H. (1998). Diet, body size and the energy costs of locomotion in saltatory primates. Folia primatol., 69: 86–100.CrossRefGoogle Scholar
  66. Wright, P.C., Heckscher, S.K., and Dunham, A.E. (1997). Predation on Milne-Edwards’ sifaka (Propithecus diadema edwardsi) by the fossa (Cryptoprocta ferox) in the rain forest of southeastern Madagascar. Folia Primatol., 68: 34–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Robin Huw Crompton
    • 1
  • William Irvin Sellers
    • 2
  1. 1.University of LiverpoolEngland UK
  2. 2.Department of Human SciencesLoughborough UniversityLoughboroughEngland UK

Personalised recommendations