Advertisement

Predator Defense by Slender Lorises and Pottos

  • K. Anne-Isola Nekaris
  • Elizabeth R. Pimley
  • Kelly M. Ablard
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

Crypsis is argued to be the most widely used anti-predator strategy amongst nocturnal primates, wrought in its extreme form amongst the Asian lorises (Lorisinae: Loris and Nycticebus) and African pottos (Perodicticinae: Arctocebus and Perodicticus) (van Schaik & van Hoof, 1983; Terborgh & Janson, 1986; Cheney & Wrangham, 1987; Stanford, 2002; Wiens, 2002). Lorises and pottos are classically characterized by relatively slow, non-saltatory locomotion (Walker, 1969; Sellers, 1996). Silent movement, combined with cryptic coloration, small group size, discrete use of vocalizations, and increased olfactory communication are said to camouflage these primates (Petter & Hladik, 1970; Charles-Dominique, 1977). Much support for these notions has been offered by past studies of lorises and pottos.

Keywords

Potential Predator Alarm Pheromone Scent Mark Poison Frog Scent Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, A.C. (1992). Constraints on the design of chemical communication systems in terrestrial vertebrates. The American Naturalist, 139: S62–S69.CrossRefGoogle Scholar
  2. Alterman, L. (1995). Toxins and toothcombs: Potential allospecific chemical defenses in Nycticebus and Perodicticus. In L. Alterman, G.A. Doyle, and M.K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 413–424). New York: Plenum Press.Google Scholar
  3. Altman, J. (1974). Observational study of behavior: Sampling methods. Behavior, 49: 227–265.Google Scholar
  4. Ambrose, L. (1999). Species diversity in West and Central African galagos (Primates, Galagonidae): The use of acoustic analysis. Doctoral thesis. Oxford Brookes University, Oxford.Google Scholar
  5. Ambrose, L. (2003). Three acoustic forms of Allen’s galagos (Primates; Galagonidae) in the Central African region. Primates, 44: 25–39.PubMedGoogle Scholar
  6. Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton Univ. Press.Google Scholar
  7. Andrew, R.J., and Klopman, R.B. (1974). Urine-washing: Comparative notes. In R.D. Martin, G.A. Doyle, and A.C. Walker (Eds.), Prosimian biology (pp. 303–312). London: Duckworth.Google Scholar
  8. Banks, P.B., Norrdahl, K., and Korpimäki, E. (2000). Nonlinearity in the predation risk of prey mobility. Proceedings of the Royal Society Biological Sciences Series B, 267: 1621–1625.CrossRefGoogle Scholar
  9. Banks, P.B., Norrdahl, K., and Korpimäki, E. (2002). Mobility decisions and the predation risks of reintroduction. Biological Conservation, 103: 133–138.CrossRefGoogle Scholar
  10. Bearder, S.K., Honess, P.E., and Ambrose, L. (1995). Species diversity among galagos with special reference to mate recognition. In L. Alterman, G. Doyle, and M.K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 331–352). New York: Plenum Press.Google Scholar
  11. Bearder, S.K., Nekaris, K.A.I., and Buzzell, C.A. (2002). Dangers of the night: Are some primates afraid of the dark? In L.E. Miller (Ed.), Eat or be eaten: Predator sensitive foraging in primates (pp. 21–43). Cambridge: Cambridge Univ. Press.Google Scholar
  12. Bearder, S.K., Nekaris, K.A.I., and Curtis, D.J. (2006). A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatologica, 77(1–2): 50–71.CrossRefGoogle Scholar
  13. Braune, P., Schmidt, S., and Zimmermann, E. (2005). Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis). Behavioural Ecology and Sociobiology, 58(6): 587–596.CrossRefGoogle Scholar
  14. Caldwell, J. (1996). The evolution of myrmecophagy and its correlates in poison frogs (Family: Dendrobatidae). Journal of Zoology, 240: 75–100.Google Scholar
  15. Charles-Dominique, P. (1974). Vie sociale de Perodicticus potto (Primates: Lorisides). Étude de terrain en forêt equatorial de l’ouest africain au Gabon. Mammalia, 38: 355–379.Google Scholar
  16. Charles-Dominique, P. (1977). Ecology and behaviour of nocturnal primates. London: Duckworth.Google Scholar
  17. Charles-Dominique, P. (1978). Solitary and gregarious prosimians: Evolution of social structures in primates. In D.J. Chivers and K.A. Joysey (Eds.), Recent advances in primatology, Volume 3 (pp. 139–149). New York: Academic Press.Google Scholar
  18. Charles-Dominique, P. (1990). Ecological adaptations related to locomotion in primates: An introduction. In F.K. Jouffroy, M.H. Stack, and C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 19–31). Sedicesimo: Editrice II.Google Scholar
  19. Cheney, D., and Wrangham, R.W. (1987). Predation. In B.B. Smuts, D.L. Cheney, R.M. Seyfarth, R.W. Wrangham, and T.T. Struhsaker (Eds.), Primate societies (pp. 227–239). Chicago: Univ. of Chicago Press.Google Scholar
  20. Chivers, D.P., Brown, G.E., and Smith, J.F. (1995). Chemical alarm signals: Predator deterrents or predator attractants? The American Naturalist, 145: 994–105.CrossRefGoogle Scholar
  21. Clark, A.B. (1982a). Scent marks as social signals in Galago crassicaudatus. I. Sex and reproductive status as factors in signals and responses. Journal of Chemical Ecology, 8(8): 1133–1151.CrossRefGoogle Scholar
  22. Clark, A.B. (1982b). Scent marks as social signals in Galago crassicaudatus. II. Discrimination between individuals by scent. Journal of Chemical Ecology, 8(8): 1153–1165.CrossRefGoogle Scholar
  23. Coultas, D.S. (2002). Bioacoustic analysis of the loud call of two species of slender loris (Loris tardigradus and L. lydekkerianus nordicus) from Sri Lanka. MSc thesis. Oxford Brookes University, Oxford.Google Scholar
  24. Darst, C.R., Menéndez-Guerrero, P.A., Coloma, L.A., and Cannatella, D.C. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): A comparative analysis. The American Naturalist, 165: 56.PubMedCrossRefGoogle Scholar
  25. Daschbach, N.J., Schein, M.W., and Haines, D.E. (1981). Vocalizations of the slow loris, Nycticebus coucang (Primates, Lorisidae). Inter. Jour. of Primatol., 2, 71–80.Google Scholar
  26. Ehrlich, A., and Musicant, A. (1977). Social and individual behaviors in captive slow lorises (Nycticebus coucang). Behaviour, 60: 195–220.Google Scholar
  27. Epple, G. (1974). Primate pheromones. In M.C. Birch (Ed.) Pheromones (pp. 366–385). New York: Elsevier.Google Scholar
  28. Evans, C., and Schilling, A. (1995). The accessory (vomeronasal) chemoreceptor system in some prosimians. In L. Alterman, G.A. Doyle, and M.K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 393–411). New York: Plenum Press.Google Scholar
  29. Fisher, H.S., Swaisgood, R.R., and Fitch-Snyder, H. (2003a). Odor familiarity and female preferences for males in a threatened primate, the pygmy loris Nycticebus pygmaeus: Applications for genetic management of small populations. Naturwissenschaften, 90(11): 509–512.PubMedCrossRefGoogle Scholar
  30. Fisher, H.S., Swaisgood, R.R., and Fitch-Snyder, H. (2003b). Countermarking by male pygmy lorises (Nycticebus pygmaeus): Do females use odor cues to select mates with high competitive ability? Behav. Ecol. and Sociobiol., 53(2): 123–130.Google Scholar
  31. Fitch-Snyder, H., and Schulze, H. (2001). Management of lorises in captivity: A husbandry manual for Asian lorisines. San Diego: Zoological Society of San Diego, Center for Reproduction of Endangered Species Press.Google Scholar
  32. Gosling, L.M. (1982). A reassessment of the function of scent marking in territories. Zeitschrift für Tierpsychologie, 60: 89–118.Google Scholar
  33. Gosling, L.M., and Roberts, S. (2001). Scent-marking by male mammals: Cheat-proof signals to competitors and mates. Advances in the Study of Behavior, 30: 169–217.CrossRefGoogle Scholar
  34. Gursky, S. (2002). Predation on a wild spectral tarsier (Tarsius spectrum) by a snake. Folia Primatol., 73: 60–62.PubMedCrossRefGoogle Scholar
  35. Gursky, S. (2003). Predation experiments on infant spectral tarsiers (Tarsius spectrum). Folia Primatol., 74(5–6): 272–284.PubMedCrossRefGoogle Scholar
  36. Gutzke, W.H.N. (2001). Field observations confirm laboratory reports of defense responses by snakes to the odors of predatory snakes. In A. Marchlewska-Koj, J. Lepri, and D. Muller-Schwarze (Eds.), Chemical signals in vertebrates (9th ed.). (pp. 285–288). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  37. Hagey, L.R., Fry, B.G., and Snyder, H. (2006). Talking defensively: A dual use for the brachial gland exudate of slow and pygmy lorises. In S. Gursky (Ed.), this volume (pp. xx–yy). New York: Kluwer/Academic Press.Google Scholar
  38. Harcourt, C.S. (1981). An examination of the function of urine washing in Galago senegalensis. Zeitschrift für Tierpsychologie, 55: 119–128.Google Scholar
  39. Hasson, O. (1991). Pursuit-deterrent signals: Communication between prey and predator. Trends in Ecology and Evolution, 6: 325–329.CrossRefGoogle Scholar
  40. Hersek, M.J, and Owings, D.H. (1993). Tail flagging by adult California ground squirrels: A tonic signal that serves different functions for males and females. Animal Behaviour, 46: 129–138.CrossRefGoogle Scholar
  41. Heymann, E.W. (2000). Spatial patterns of scent marking in wild moustached tamarins, Saguinus mystax: No evidence for a territorial function. Animal Behaviour, 2000: 723–730.CrossRefGoogle Scholar
  42. Heymann, E.W. (2001). Interspecific variation of scent-marking behaviour in wild tamarins, Saguinus mystax and Saguinus fuscicollis. Folia Primatol., 72: 253–267.PubMedCrossRefGoogle Scholar
  43. Hill, R.A., and Dunbar, R.I.M. (1998). An evaluation of the roles of predation rate and predation risk as selective pressures on primate grouping behaviour. Behaviour, 135(4): 411–430.Google Scholar
  44. Humphries, R.E., Robertson, D.H.L., Nevison, C.M., Beynon, R.J., and Hurst, J.L. (2001). The role of urinary proteins and volatiles in competitive scent marking among male house mice. In A. Marchlewskha-Koj, J. Lepri, and D. Muller-Schwarze (Eds.), Chemical signals in vertebrates (9th ed.). (pp. 353–360). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  45. Ilse, D.R. (1955). Olfactory marking of territory in two young male lorises kept in captivity in Poona. British Jour. of Animal Behav., 3: 118–120.CrossRefGoogle Scholar
  46. Jackson, B.D., Morgan, E.D., and Billen, J.P.J. (1990). A note on pygidial glands of primitive Australian ants: A new source of odorous chemicals. In A.R. McCaffery and I.D. Wilson (Eds.), Chromatography and isolation of insect hormones and pheromones New York: Plenum Press. p. 335–341.Google Scholar
  47. Johnston, R.E. (1999). How do hamsters know whose scent is on top and why should it matter? In R. Johnston, D. Muller-Schwartz, and P. Sorenson (Eds.), Advances in chemical signals in vertebrates (pp. 227–238). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  48. Koivula, M., Korpimaki, E. and Viitala, J. (1997). Do Tengmalm’s owls see vole scent marks visible in ultraviolet light? Animal Behaviour, 54: 873–877.PubMedCrossRefGoogle Scholar
  49. Kotenkova, E.V., and Naidenko, S.V. (1999). Discrimination of con-and heterospecific odors in different taxa of the Mus musculus species group. In R. Johnston, D. Muller-Schwartz, and P. Sorenson (Eds.), Advances in chemical signals in vertebrates (pp. 299–208). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  50. Lewis, R.J. (2004). Sex differences in scent-marking in Sifaka: Mating conflict or male services? Unpublished doctoral dissertation. University of Texas at Austin, Texas.Google Scholar
  51. Lima, S. L. and Dill, L. M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68: 619–640.Google Scholar
  52. Manley, G. (1974). Functions of the external genital glands of Perodicticus and Arctocebus. In R.D. Martin, G.A. Doyle, and A.C. Walker (Eds.), Prosimian biology (pp. 313–329). London: Duckworth.Google Scholar
  53. Mathis, A., Chivers, D.P., and Smith, J.F. (1995). Chemical alarm signals: Predator deterrents or predator attractants. The American Naturalist, 145(6): 994–1005.CrossRefGoogle Scholar
  54. Motulsky, H. (1995). Intuitive biostatistics. Oxford: Oxford Univ. Press.Google Scholar
  55. Nekaris, K.A.I. (2001). Activity budget and positional behavior of the Mysore slender loris (Loris tardigradus lydekkarianus): Implications for “slow climbing” locomotion. Folia Primatol., 72: 228–241.PubMedCrossRefGoogle Scholar
  56. Nekaris, K.A.I. (2002). Slender in the night. Natural History, 2(02): 54–59.Google Scholar
  57. Nekaris, K.A.I. (2003). Observations on mating, birthing and parental care in three taxa of slender loris in India and Sri Lanka (Loris tardigradus and Loris lydekkerianus). Folia Primatol., 74: 312–336.PubMedCrossRefGoogle Scholar
  58. Nekaris, K.A.I., and Jayewardene, J. (2003). Pilot study and conservation status of the slender loris (Loris tardigradus and Loris lydekkerianus) in Sri Lanka. Primate Conservation, 19: 83–90.Google Scholar
  59. Nekaris, K.A.I., and Jayewardene, J. (2004). Distribution of slender lorises in four ecological zones in Sri Lanka. Journal of Zoology, 262: 1–12.CrossRefGoogle Scholar
  60. Nekaris, K.A.I., and Rasmussen, D.T. (2003). Diet of the slender loris. Inter. Jour. of Primatol., 24(1): 33–46.CrossRefGoogle Scholar
  61. Osman Hill, W.C. (1938). A curious habit common to lorisoid and platyrrhine monkeys. Ceylon Journal of Science B, 21(1): 65.Google Scholar
  62. Palagi, E., Gregorace, A., and Borgognini Tarli, S.M. (2002). Development of olfactory behavior in captive ring-railed lemurs (Lemur catta). Inter. Jour. of Primatol., 23(3): 587–599.CrossRefGoogle Scholar
  63. Perret, M. (1995). Chemocommunication in the reproduction function of mouse lemurs. In L. Alterman, G.A. Doyle, and M.K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 372–392). New York: Plenum Press.Google Scholar
  64. Perrot-Sinal, T., Kavaliers, M., and Ossenkopp, P. (1999). Changes in locomotor activity following predator odor exposure are dependent on sex and reproductive status in the meadow vole. In R. Johnston, D. Muller-Schwartz, and P. Sorenson (Eds.), Advances in chemical signals in vertebrates (pp. 497–504). New York: Kluwer Academic/Plenum Press.Google Scholar
  65. Petrulis, A., Peng, M., and Johnston, R.E. (2000). The role of the hippocampal system in social odor discrimination and scent-marking in female golden hamsters (Mesocricetus auratus). Behavioural Neuroscience, 114(1): 184–195.CrossRefGoogle Scholar
  66. Petter, J.J., and Hladik C.M. (1970). Observations sur le domaine vital et la densité de population de Loris tardigradus dans les forêts de Ceylon. Mammalia, 34: 394–409.CrossRefGoogle Scholar
  67. Pimley, E.R. (2002). The behavioural ecology and genetics of the potto (Perodicticus potto edwardsi) and Allen’s bushbaby (Galago alleni cameronensis). Doctoral thesis. University of Cambridge, Cambridge.Google Scholar
  68. Pimley, E.R., and Bearder, S.K. (In press). Potto (Perodicticus). In J. Kingdon, D. Happold, and T. Butysnki (Eds.), Mammals of Africa, Vol. 1. (pp. xx–yy). Cambridge: Cambridge Univ. Press.Google Scholar
  69. Pimley, E.R., Bearder, S.K., and Dixson, A.F. (2005a) Examining the social organization of the Milne-Edwards’ potto Perodicticus potto edwardsi. Amer. Jour. of Primatol., 66(4): 317–330.CrossRefGoogle Scholar
  70. Pimley, E.R., Bearder, S.K., and Dixson, A.F. (2005b). Home range analysis of Perodicticus potto edwardsi and Sciurocheirus cameronensis. Inter. Jour. of Primatol., 26(1): 191–206.CrossRefGoogle Scholar
  71. Rasmussen, D.T. (1986). Life history and behavior of slow lorises and slender lorises. Doctoral thesis. Duke University, Durham, NC.Google Scholar
  72. Rasmussen, D.T., and Nekaris, K.A.I. (1998). Evolutionary history of the lorisiform primates. Folia Primatol., 69: 250–285.PubMedCrossRefGoogle Scholar
  73. Roberts, S.C., and Gosling, L.M. (2001). The economic consequences of advertising scent mark location on territories. In A. Marchlewsha-Koj, J. Lepri, and D. Schwarze (Eds.), Chemical signals in vertebrates (9th ed.). (pp. 11–17). New York: Kluwer Academic/Plenum Press, New York.Google Scholar
  74. Rohr, J.R., and Madison, D.M. (2001). A chemically mediated trade-off between predation risk and mate search in newts. Animal Behaviour, 62: 863–869.CrossRefGoogle Scholar
  75. Schilling, A. (1979). Olfactory communication in prosimians. In G.A. Doyle and R.D. Martin (Eds.), The study of prosimian behaviour (pp. 461–542). London: Academic Press, Inc.Google Scholar
  76. Schülke, O.(2001). Social anti-predator behaviour in a nocturnal lemur. Folia Primatologica, 72(6): 332–334.Google Scholar
  77. Schulze, H., and Meier, B. (1995). Behaviour of captive Loris tardigradus nordicus: A qualitative description including some information about morphological bases of behavior. In L. Alterman, M. Doyle, and M.K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 221–250). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  78. Seitz, E. (1969). Die Bedeutung gerüchlicher Orientierung beim Plumplori Nycticebus coucang Boddaert 1785 (Prosimii, Lorisidae). Zeitschrift für Tierpsychologie, 26: 73–103.PubMedCrossRefGoogle Scholar
  79. Sellers, W. (1996). A biomechanical investigation into the absence of leaping in the locomotor repertoire of the slender loris (Loris tardigradus). Folia Primatol., 67: 1–14.PubMedGoogle Scholar
  80. Shivik, J.A., and Clark, L. (1999). The development of chemosensory attractants for brown tree snakes. In R. Johnston, D. Muller-Schwartz, and P. Sorsenson (Eds.), Advances in chemical signals in vertebrates (pp. 649–654). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  81. Smith, E.T., and Gordon, J.S. (2002). Sex differences in olfactory communication in Saguinus labiatus. Inter. Jour. of Primatol., 23(2): 429–441.CrossRefGoogle Scholar
  82. Solomon, N.G. (1999). The functional significance of olfactory cues in the pine vole (Microtus pinetorum). In R. Johnston, D. Muller-Schwartz, and P. Sorsenson (Eds.), Advances in chemical signals in vertebrates (pp. 407–419). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  83. Stanford, C. (2002). Avoiding predators: Expectations and evidence in primate antipredator behavior. Inter. Jour. of Primatol., 23(4): 741–757.CrossRefGoogle Scholar
  84. Still, J. (1905). On the loris in captivity. Spolia Zeylanica, 3: 155–157.Google Scholar
  85. Terborgh, J., and Janson, C. (1986). Socioecology of primate groups. Annual Review of Ecological Systematics, 17: 111–135.CrossRefGoogle Scholar
  86. van Schaik, C., and van Hoof, J. (1983). On the ultimate causes of primate social systems. Behaviour, 5: 91–117.Google Scholar
  87. Walker, A.C. (1969). The locomotion of the lorises, with special reference to the potto. East African Wildlife Journal, 7: 1–5.Google Scholar
  88. Watson, S.L., Ward, J.P., David, K.B., and Stavisky, R.C. (1999). Scent-marking and cortisol response in the small-eared bushbaby (Otolemur garnettii). Physiology & Behavior, 66(4): 695–699.CrossRefGoogle Scholar
  89. Welker, C. (1973). Ethological significance of the urine washing by Galago crassicaudatus E. Geoffroy, 1812 (Lorisiformes: Galagidae). Folia Primatol., 20: 429–452.PubMedCrossRefGoogle Scholar
  90. Wiens, F. and Zitzmann, A. (1999). Predation on a wild slow loris (Nycticebus coucang) by a reticulated python (Python reticulatus). Folia Primatol., 70: 362–364.PubMedCrossRefGoogle Scholar
  91. Wiens, F. (2002). Behavior and ecology of wild slow lorises (Nycticebus coucang): Social organisation, infant care system and diet. Doctoral thesis. Bayreuth University, Bayreuth (Germany).Google Scholar
  92. Wiens, F., and Zitzmann, A. (2003). Social structure of the solitary slow loris Nycticebus coucang (Lorisidae). Journal of Zoology, 261(1): 35–46.CrossRefGoogle Scholar
  93. Wiley, R.H., and Richards, D.G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav. Ecol. and Sociobiol., 3: 69–94.CrossRefGoogle Scholar
  94. Wolff, J.O., Mech, S.G., and Thomas, S.A. (2002). Scent marking in female prairie voles: A test of alternative hypotheses. Ethology, 108: 483–494.CrossRefGoogle Scholar
  95. Woodland, D.J., Jaafar, Z., and Knight, M.-L. (1980). The “pursuit deterrent” function of alarm signals. American Naturalist, 115: 748–753.CrossRefGoogle Scholar
  96. Wyatt, T.D. (2003). Pheromones and animal behavior: Communication by smell and taste. Cambridge: Cambridge Univ. Press.Google Scholar
  97. Zimmerman, E. (1985). Vocalisations and associated behaviours in adult slow loris (Nycticebus coucang). Folia Primatol., 44: 52–64.Google Scholar
  98. Zimmermann, E. (1995). Acoustic communication in nocturnal prosimians. In: Alterman, L., Doyle, G. A. and Izard, M. K. (eds.), Creatures of the Dark: The nocturnal prosimians (pp. 311–330). New York: Plenum Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. Anne-Isola Nekaris
    • 1
  • Elizabeth R. Pimley
    • 2
  • Kelly M. Ablard
    • 1
  1. 1.Nocturnal Primate Research Group School of Social Science and Law Department of AnthropologyOxford Brookes UniversityOxfordEngland UK
  2. 2.Nocturnal Primate Research GroupUniversity of CambridgeCambridgeEngland UK

Personalised recommendations