Skip to main content

Intense Laser Interaction with Noble Gas Clusters

  • Chapter
  • 3158 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 134))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In general, the radius of the electronic cloud is determined by both the net postive cluster charge and the electronic temperature.

  2. 2.

    A recent estimate of nonlinear cluster heating indicated results that were too small to explain the total energy absorption [61]. The authors used the shielded laser field inside the cluster, \(E_s\) [7] for the calculation of the energy absorption, \(\int_{-\infty}^t \dot{x}(t^\prime) E_{s}(t^\prime)\), rather than the full laser field, as required by Eq. (3).

References

  1. V.P. Krainov, and M.B. Smirnov, Phys. Rep. 370, 237 (2002).

    Article  ADS  Google Scholar 

  2. K. Boyer, and C.K. Rhodes, J. Phys. B: At. Mol. Opt. Phys. 27, L633 (1994).

    Article  ADS  Google Scholar 

  3. A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, and C.K. Rhodes, Nature 370, 631 (1994).

    Article  ADS  Google Scholar 

  4. A.B. Borisov, A. McPherson, B.D. Thompson, K. Boyer, and C.K. Rhodes, J. Phys. B: At. Mol. Opt. Phys. 28, 2143 (1995).

    Article  ADS  Google Scholar 

  5. K. Kondo et al., J. Phys. B: At. Mol. Opt. Phys. 30, 2707 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  6. W.A. Schroeder et al., J. Phys. B: At. Mol. Opt. Phys. 31, 5031 (1998).

    Article  ADS  Google Scholar 

  7. T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, and M.D. Perry, Phys. Rev. A 53, 3379 (1996).

    Article  ADS  Google Scholar 

  8. T. Ditmire, R.A. Smith, J.W.G. Tisch, and M.H.R. Hutchinson, Phys. Rev. Lett. 78, 3121 (1997).

    Article  ADS  Google Scholar 

  9. S. Dobosz et al., Phys. Rev. A 56, R2526 (1997).

    Article  ADS  Google Scholar 

  10. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 30, L251 (1997).

    Article  ADS  Google Scholar 

  11. J. Zweiback, T. Ditmire, and M.D. Perry, Phys. Rev. A 59, R3166 (1999).

    Article  ADS  Google Scholar 

  12. S. Ter-Avetisyan et al., Phys. Rev. E 64, 036404 (2001).

    Article  ADS  Google Scholar 

  13. M. Schnürer et al., Eur. Phys. J. D 14, 331 (2001).

    Article  ADS  Google Scholar 

  14. E. Parra, I. Alexeev, J. Fan, K.Y. Kim, S.J. McNaught, and H.M. Milchberg, Phys. Rev. E 62, R5931 (2000).

    Article  ADS  Google Scholar 

  15. V. Kumarappan, M. Krishnamurthy, D. Mathur, and L.C. Tribedi, Phys. Rev. A 63, 023203 (2001).

    Article  ADS  Google Scholar 

  16. V. Kumarappan, M. Krishnamurthy, and D. Mathur, Phys. Rev. Lett. 87, 085005 (2001).

    Article  ADS  Google Scholar 

  17. E. Springate et al., Phys. Rev. A 61, 063201 (2000).

    Article  ADS  Google Scholar 

  18. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, Phys. Rev. Lett. 80, 261 (1998).

    Article  ADS  Google Scholar 

  19. G.C. Junkel-Vives et al., Phys. Rev. A 64, 021201(R) (2001).

    Article  ADS  Google Scholar 

  20. J. Abdallah Jr. et al., Phys. Rev. A 63, 032706 (2001).

    Article  ADS  Google Scholar 

  21. K.Y. Kim et al., Phys. Rev. A 71, 011201(R) (2005).

    Article  ADS  Google Scholar 

  22. H. Honda, E. Miura, K. Katsura, B. Takahashi, and K. Kondo, Phys. Rev. A 61, 023201 (2000).

    Article  ADS  Google Scholar 

  23. M. Mori et al., J. Appl. Phys. 90, 3595 (2001).

    Article  ADS  Google Scholar 

  24. H. Wabnitz et al., Nature 420, 482 (2002).

    Article  ADS  Google Scholar 

  25. T. Laarmann et al., Phys. Rev. Lett. 92, 143401 (2004).

    Article  ADS  Google Scholar 

  26. Private communication, Thomas Moeller.

    Google Scholar 

  27. L. Köller, et al., Phys. Rev. Lett. 82, 3783 (1999).

    Article  ADS  Google Scholar 

  28. E.E.B. Campbell, et al., Phys. Rev. Lett. 84, 2128 (2000).

    Article  ADS  Google Scholar 

  29. V.R. Bhardwaj, P.B. Corkum, and D.M. Rayner, Phys. Rev. Lett. 91, 203004 (2003).

    Article  ADS  Google Scholar 

  30. M. Smits, C.A. de Lange, A. Stolow, and D. M. Rayner, Phys. Rev. Lett. 93, 203402 (2004).

    Article  ADS  Google Scholar 

  31. T. Döppner, Th. Fennel, Th. Diederich, J. Tiggesbäumker, and K. H. Meiwes-Broer, Phys. Rev. Lett. 94, 013401 (2005).

    Article  ADS  Google Scholar 

  32. F. Calvayrac, P.-G. Reinhard, E. Suraud, and C.A. Ullrich, Phys. Rep. 337, 493 (2000).

    Article  ADS  Google Scholar 

  33. E. Springate, S.A. Aseyev, S. Zamith, and M.J.J. Vrakking, Phys. Rev. A 68, 053201 (2003).

    Article  ADS  Google Scholar 

  34. S. Sakabe et al., Phys. Rev. A 69, 023203 (2004).

    Article  ADS  Google Scholar 

  35. M. Krishnamurthy et al., J. Phys. B: At. Mol. Opt. Phys. 39, 625 (2006).

    Article  ADS  Google Scholar 

  36. T. Ditmire et al., Nature 398, 489 (1999).

    Article  ADS  Google Scholar 

  37. J. Zweiback et al., Phys. Rev. Lett. 84, 2634 (2000).

    Article  ADS  Google Scholar 

  38. K.W. Madison et al., Phys. Rev. A 70, 053201 (2004).

    Article  ADS  Google Scholar 

  39. S.B. Hansen et al., Phys. Rev. E 71, 016408 (2005).

    Article  ADS  Google Scholar 

  40. K.B. Fournier et al., Phys. Rev. Lett. 67, 016402 (2003).

    ADS  Google Scholar 

  41. Y. Fukuda et al., Phys. Rev. A 67, 061201 (2003).

    Article  ADS  Google Scholar 

  42. R.C. Issac et al., Phys. Plasmas 11, 3491 (2004).

    Article  ADS  Google Scholar 

  43. J.A. King et al., Rev. Sci. Inst. 76, 076102 (2005).

    Article  ADS  Google Scholar 

  44. T. Ditmire, R.A. Smith, and M.H.R. Hutchinson, Opt. Lett. 23, 322 (1998).

    Article  ADS  Google Scholar 

  45. V. Kumarappan, K.Y. Kim, and H.M. Milchberg, Phys. Rev. Lett. 94, 205004 (2005).

    Article  ADS  Google Scholar 

  46. I. Last, and J. Jortner, Phys. Rev. A 62, 013201 (2000).

    Article  ADS  Google Scholar 

  47. H.M. Milchberg, S.J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001).

    Article  ADS  Google Scholar 

  48. C. Rose-Petruck, K.J. Schafer, K.R. Wilson, and C.P.J. Barry, Phys. Rev. A 55, 1182 (1997).

    Article  ADS  Google Scholar 

  49. V.P. Krainov, Sov. Phys. – JETP 92, 960 (2001).

    Article  ADS  Google Scholar 

  50. M.B. Smirnov, and V.P. Krainov, Phys. Plasmas 10, 443 (2003).

    Article  ADS  Google Scholar 

  51. M.B. Smirnov, and V.P. Krainov, Phys. Rev. A 69, 043201 (2004).

    Article  ADS  Google Scholar 

  52. T. Bornath, P. Hilse, and M. Schlanges, Laser Phys. 17, 591 (2007).

    Google Scholar 

  53. A.V. Gets, and V.P. Krainov, J. Phys. B 39, 1787 (2006).

    Article  ADS  Google Scholar 

  54. C. Siedschlag, and J.M. Rost, Phys. Rev. Lett. 89, 173401 (2002).

    Article  ADS  Google Scholar 

  55. U. Saalmann, and J.M. Rost, Phys. Rev. Lett. 91, 223401 (2003).

    Article  ADS  Google Scholar 

  56. C. Siedschlag, and J.M. Rost, Phys. Rev. Lett. 93, 043402 (2004).

    Article  ADS  Google Scholar 

  57. R. Santra, and C.H. Greene, Phys. Rev. Lett. 91, 233401 (2003).

    Article  ADS  Google Scholar 

  58. C. Jungreuthmayer, M. Geissler, J. Zanghellini, and T. Brabec, Phys. Rev. Lett. 92, 133401 (2004).

    Article  ADS  Google Scholar 

  59. C. Jungreuthmayer, L. Rammuno, J. Zanghellini, and T. Brabec, J. Phys. B 38, 3029 (2005).

    Article  ADS  Google Scholar 

  60. M. Krishanmurthy et al., J. Phys. B 39, 625 (2006).

    Article  ADS  Google Scholar 

  61. C. Deiss et al., Phys. Rev. Lett. 96, 013203 (2006).

    Article  ADS  Google Scholar 

  62. Ph.A. Korneev, S.V. Popruzehnko, S.F. Zaretsky, and W. Becker, Las. Phys. Lett. 2, 452 (2005).

    Article  ADS  Google Scholar 

  63. W.L. Kruer, The physics of laser plasma interactions, Westview Press, Colorado (2003).

    Google Scholar 

  64. P. Mulser, and M. Kanapathipallai, Phys. Rev. A 71, 063201 (2005).

    Article  ADS  Google Scholar 

  65. L. D. Landau, and E.M. Lifshitz, Mechanics, Pergamon Press, Oxford (1960).

    MATH  Google Scholar 

  66. E.M. Lifshitz, and L.P. Pitaevskii, Kinetic Theory, Pergamon Press, Oxford (1981).

    Google Scholar 

  67. L. Ramunno, C. Jungreuthmayer, H. Reinholz, and T. Brabec, J. Phys. B: At. Mol. Opt. Phys. 39, 4923 (2006).

    Google Scholar 

  68. M. Kundu and D. Bauer, Phys. Rev. Lett. 96, 123401 (2006).

    Article  ADS  Google Scholar 

  69. S. Ichimaru, Statistical Plasma Physics Volume II: Condensed Plasmas, Westview Press, Colorado (2004).

    Google Scholar 

  70. Y.L. Shen, The principles of nonlinear optics, Wiley, New York (1984).

    Google Scholar 

  71. M.Y. Shverdin, D.R. Walker, D.D. Yavuz, G.Y. Yin, and S.E. Harris, Phys. Rev. Lett. 94, 033904 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lora Ramunno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramunno, L., Brabec, T., Krainov, V. (2008). Intense Laser Interaction with Noble Gas Clusters. In: Brabec, T. (eds) Strong Field Laser Physics. Springer Series in Optical Sciences, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34755-4_10

Download citation

Publish with us

Policies and ethics