Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 128))

Abstract

Welding, brazing, and soldering are thermal processes used to join material. Laser technology has been applied for these processes for many years. The main principle of all laser-supported joining technologies is the absorption of laser radiation near to the contact area of the joining partners and — if used — also at the filler material, the transformation of the radiation energy into heat and the transition of part of the irradiated material into the molten (metals) or plasticized (polymers) state. This phase transformation allows the creation of a solid joint by resolidification of the molten or plasticized volume and bridging the gap between the joining partners. This happens spatially behind the interaction zone being moved along the joint track or simply temporally after the laser is switched off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petring D, Benter C, Poprawe R (October 2001) Fundamentals and Applications of Diode Laser Welding. ICALEO 2001, Jacksonville, FL, USA.

    Google Scholar 

  2. Gillner A, Loosen P, Petring D, Wissenbach K, Poprawe R (November 1999) Industrial Applications of High Power Diode Lasers. ICALEO 1999, San Diego, CA, USA, LIA, 87, A12–A22.

    Google Scholar 

  3. Petring D (September 1999) Tiefschweissen mit Hochleistungs-Diodenlasern. Laser Magazin, S. 3.

    Google Scholar 

  4. Petring D (December 1999) Deep-penetration welding with diode lasers. Industrial Laser Solutions, p. 3.

    Google Scholar 

  5. Michel J, Niessen M, Kostrykin V, Schulz W, Zimmermann C, Petring D (1999) LaserWeld 3D, Software package, Fraunhofer-Institute for Laser Technology, Aachen, Germany.

    Google Scholar 

  6. Modulare Diodenlaser Strahlwerkzeuge (MDS), funded by the Federal Ministry of Education and Research, Germany.

    Google Scholar 

  7. DaimlerChrysler AG (2003), Sindelfingen, Germany.

    Google Scholar 

  8. Developed at DaimlerChrysler AG, Sindelfingen, Germany.

    Google Scholar 

  9. Brandner M, Seibold G, Chang C, Dausinger F, Hügel H (2000) Soldering with solid state and diode lasers: Energy coupling, temperature rise, process window. Journal of Laser Applications 12, 194–199.

    Article  ADS  Google Scholar 

  10. Bohmann CF (1974) The Laser and Microsoldering. SME: Technical Paper, No. AD74-810, pp. 1–19.

    Google Scholar 

  11. Haag M (1997) Assessment of different high power diode lasers for material processing, Lasers in Material Processing. Proceedings of the SPIE 3097, 583–591.

    Google Scholar 

  12. Ringle H, Vayhinger HU, Laser lötet räumliche Lötstellen. Feinwerktechnik & Messtechnik, Carl Hanser Verlag, Ausgabe 11.

    Google Scholar 

  13. van Veen NJA, Laser Löttechnologie. VDI Berichte Band 966, 39–52.

    Google Scholar 

  14. Horneff P, Treusch HG, Beyer E, Herziger G, Knödler D, Möller W (1990) Temperaturgeregeltes Lasermikrolöten. DVS-Berichte Band 129, 62–65.

    Google Scholar 

  15. Nakahara S, Kamata T, Yoneda N, Hisada S, Fujita T (2000) Micro soldering using a YAG laser — on lead-free solder: First International Symposium on Laser Precision Microfabrication. Proceedings of the SPIE, 4088, 276–279.

    Google Scholar 

  16. Kerbow G (2001) High-temperature environments create new SMT challenges. Surface Mounted Technology September, 66–71.

    Google Scholar 

  17. Liedke V (2001) Lasersysteme für selektives Löten. Messeinformation der SEHO Seitz & Hohnerlein GmbH, Kreuzwertheim. LASER’01, München.

    Google Scholar 

  18. Hierl S, Geiger M (1999) Simultaneous laser soldering for SMDS on 3D-MIDS. Proceedings of Surface Mount Technology 440–445.

    Google Scholar 

  19. Bosse L, Schildecker A, Gillner A, Poprawe R (2002) High quality laser beam soldering. Microsystem Technologies 7, 215–219.

    Article  Google Scholar 

  20. Bosse L, Gillner A, Poprawe R (2001) Adapted time-power profile for laser beam soldering with solder paste. Proceedings of the SPIE 4406, 76–81.

    Google Scholar 

  21. Herrmann G, Egerer KA (1991) Handbuch der Leiterplattentechnik, Band. 2 Neue Verfahren neue Technologien. Leuze Verlag.

    Google Scholar 

  22. Hacke HJ (1987) Montage Integierter Schaltungen. Springer Verlag, Berlin.

    Google Scholar 

  23. Hanreich G, Wolter KJ, Nicolics J (2001) Rework of Flip-Chip populated PCBs by laser desoldering. Proceedings of the 24th International Spring Seminar on Electronics Technology, May 5–9, 63–67.

    Google Scholar 

  24. Sommerfeld P, Jendritza D, Hell S (1999) Advanced packaging and interconnection technologies for automotive microelectronic modules. Advanced Microsystems for Automotive Applications 99, 111–119.

    Google Scholar 

  25. Engbring J, Jendritza D (1998) Gehäusemontage von Keramikhybriden mit Hilfe eines Flammlötprozesses, VTE 3, 130–135.

    Google Scholar 

  26. Chang DU (1986) Experimental investigation of laser beam soldering. Welding Journal October, 33–41.

    Google Scholar 

  27. Klein RM (1990) Bearbeitung von Polymerwerkstoffen mit infraroter Laserstrahlung. PhD Thesis RWTH Aachen, Fraunhofer-Institut für Lasertechnik ILT, Germany.

    Google Scholar 

  28. Duley WW, Mueller RE (1992) CO2 laser welding of polymers. Polymer Engineering and Science, Mid-May 1992, 32(9), 582–585.

    Article  Google Scholar 

  29. Atanasov PA (1995) Laser welding of plastics — theory and experiment. Optical Engineering 34/10, pp. 2976–2980.

    Article  ADS  Google Scholar 

  30. Nonhof CJ (1994) Laser welding of polymers, Optical Engineering SCI 34/20, pp. 1547–1549.

    Google Scholar 

  31. Hänsch D (2001) Die optischen Eigenschaften von Polymeren und ihre Bedeutung für das Durchstrahlschweißen mit Diodenlaser. PhD Thesis RWTH Aachen. Fraunhofer-Institut für Lasertechnik ILT, Germany.

    Google Scholar 

  32. Bachmann FG, Russek UA (2002) Laser welding of polymers using high power diode lasers. Proceedings Photonics West.

    Google Scholar 

  33. Russek UA et al., (2003) Laser beam welding of thermoplastics, Proceedings of the LASE 2003, San Jose, CA, USA. Conference 4977 B, Laser-Based Packaging in Microelectronics and Photonics, San Jose, CA, USA, pp. 458–472.

    Google Scholar 

  34. Brune J (2000) Thermoplastische Kunststoffe schweissen. Laser Praxis 51, Juni.

    Google Scholar 

  35. Russek UA, Otto G, Poggel M (2001) Verbindliche Nähte — Automatisiertes Fügen von Kunststoffen mit Hochleistungs-Diodenlasern. Laser Praxis 1/2001, 14–16.

    Google Scholar 

  36. Haferkamp H, von Busse A, Hudstedt M, Haberstroh E, Lützeler R (2002) Bestimmung der Laserschweißeignung von Kunststoffen mit einem thermographischen Verfahren. Der Praktiker, 10.

    Google Scholar 

  37. Menges G, Haberstroh E, Michaeli W, Schmachtenberg E, Werkstoffkunde Kunststoffe, 5. Auflage. Chapter 12. Carl Hanser Verlag, München Wien.

    Google Scholar 

  38. Saechtling H, Kunststoff Taschenbuch, 27. Ausgabe, Tab. 5.6. Carl Hanser Verlag, München Wien.

    Google Scholar 

  39. Kaplan AFH (2002) Theoretical Analysis of Laser Beam Cutting. Berichte aus der Fertigungstechnik. Shaker Verlag, Aachen.

    Google Scholar 

  40. Petring D (2001) Basic description of laser cutting. In JF Ready and DF Farson (eds.): LIA Handbook of Laser Materials Processing. Laser Institute of America and Magnolia Publishing, Orlando.

    Google Scholar 

  41. Petring D (1995) Anwendungsorientierte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozessoptimierung. Doctor Thesis. RWTH Aachen 1994. Shaker Verlag, Aachen.

    Google Scholar 

  42. Knitsch A, Seme B, Hoffmann D, Petring D, Loosen P, Iffländer R, Poprawe R (2003) Diode Laser Systems for Cutting Applications of Thin Materials. ICALEO 2003. Jacksonville, FL, USA.

    Google Scholar 

  43. Petring D (2005) Computer simulation of laser cutting for the limiting-value-oriented development of robust processes. Welding and Cutting 4(1), 37–42.

    Google Scholar 

  44. Michel J, Niessen M, Kostrykin V, Schulz W, Zimmermann C, Petring D (1999) LaserWeld3D. ILT Software-Paket.

    Google Scholar 

  45. Franke JW (1994) Modellierung und Optimierung des Laserstrahlbrennschneidens niedriglegierter Stähle. Dissertation RWTH Aachen, DVS-Berichte, Band 161.

    Google Scholar 

  46. Franke J, Schulz W, Herziger G (1993) Abbrandstabilisiertes Laserstrahlbrennschneiden — ein neues Verfahren. Schweißen und Schneiden 45, Heft 9, S, 490–493.

    Google Scholar 

  47. Arata Y et al. (1979) Dynamic behavior in laser gas cutting of mild steel. Transaction of JWRI, 8 S, 15–25.

    Google Scholar 

  48. Bausch S, Groll K (2003) Perspektiven für die laserunterstützte Zerspanung — Wirtschaftliche Bearbeitung schwerzerspanbarerWerkstoffe. WT Werkstattstechnik Online 06/2003.

    Google Scholar 

  49. Klocke F, Bausch S (2001) Integration of high power diode laser in machine tools. Proceedings of 1st International WLT-Conference on Lasers in Manufacturing. Munich, Germany, June 2001, 8–21.

    Google Scholar 

  50. Nagel J (2004) Laserhärten und Laser-Pulver-Auftragschweißen von Umformwerkzeugen. Aachener Kolloquium für Lasertechnik AKL’04, 28.–30.04.2004, Tagungsband, pp. 295–305.

    Google Scholar 

  51. Bergmann L, Schäfer C (1987) Lehrbuch der Experimentalphysik. Volume III Optik. Walter de Gryter, Berlin, New York.

    Google Scholar 

  52. Gasser A, Kreutz EW, Wissenbach K (1988) Physical aspects of surface processing with laser radiation. SPIE Proceedings Series 1020.

    Google Scholar 

  53. Dausinger F (1990) Laser with different wavelength — implications for various applications. Proceeding of the ECLAT’90, 1.

    Google Scholar 

  54. Brandner M, Seibold G, Haag M, Dausinger F, Hügel H (1999) Effektive Umsetzung der spezifischen Strahleigenschaften von HLDL zur Materialbearbeitung. LaserOpto 31, 1/1999.

    Google Scholar 

  55. Beyer E, Wissenbach K (1998) Oberflächenbehandlung mit Laserstrahlung. Springer Verlag, Berlin, Heidelberg, New York, Barcelona, Budapest, Hong Kong, London, Mailand, Paris, Santa Clara, Singapur, Tokyo, p. 50.

    Google Scholar 

  56. Stern G (1990) Absorptivity of cw CO2, CO and YAG laser beams by different metallic alloys. Proceeding EKLAT’90 1, 25.

    Google Scholar 

  57. Wissenbach K (1985) Umwandlungshärten mit CO2-Laserstrahlung. Ph.D. Thesis. Darmstadt.

    Google Scholar 

  58. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloy and plaine carbon steels. Acta Metal 7, 59–60.

    Article  Google Scholar 

  59. Hougardy HP (1984) Darstellung der Umwandlungen für Technische Anwendungen und Möglichkeiten ihrer Beeinflussung. Werkstoffkunde Stahl, volume 1. Grundlagen. Springer Verlag, Berlin, Heidelberg, New York, Tokyo, Verl. Stahleisen Düsseldorf, pp. 198–231.

    Google Scholar 

  60. Sluzalec A (1992) Introduction to Nonlinear Thermomechanics. Springer Verlag, Berlin, Heidelberg, New York, Tokyo, Hong Kong, Barcelona, Budapest, pp. 73–78.

    MATH  Google Scholar 

  61. Eckstein HJ (1969) Wärmebehandlung von Stahl. Metallkundliche Grundlagen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  62. Grimsehl (1985) Lehrbuch der Physik, volume 3. Optik. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, p. 225.

    Google Scholar 

  63. Bonss S, Goebel G, Seifert M, Brenner B, Beyer E (2003) Fast and Innovative Determination of Parameters for Steel Hardening with High Power Diode Lasers. 1st International Symposium on High-Power Laser Macroprocessing. Proceedings of the SPIE 4831, 53–58.

    Google Scholar 

  64. Schwarz T, Morgenthal L, Pollak D, Quitzow A(1998) Verfahren zur lokal gezielten Wärmebehandlung von Werkstückoberflächen. Patent DE 198 53 733 C1.

    Google Scholar 

  65. Lepski D, Reitzenstein W (1991) Computergestützte Prozessoptimierung bei der Laser-Umwandlungshärtung von Eisenwerkstoffen. Härterei-Technische Mitteilungen, volume 46, issue 3. Carl Hanser Verlag, München Wien, pp. 178–183.

    Google Scholar 

  66. Drenker A, Baumann M, Pirch N, Plum H-D, Sommer J, Vitr G, Kaierle S, Wissenbach K, Poprawe R (2003) An example for modular diode laser systems: Minimizing warpage during transformation hardening of linear guiding rails. Proceedings of the Second International WLT-Conference on Laser in Manufacturing, June 2003, Munich, Germany, p. 33.

    Google Scholar 

  67. Traub M, Plum H-D, Hoffmann H-D, Loosen P, Poprawe R (2003) Homogenised high power diode laser systems for material processing and illumination. Proceedings of the Second International WLT-Conference on Laser in Manufacturing, June 2003, Munich, Germany, p. 29.

    Google Scholar 

  68. Bonss S, Seifert M, Brenner B, Beyer E (2000) Innovations in heat treatment with high power diode lasers. 19th Congress on Applications of Lasers and Electro-Optics, ICALEO 2000. Proceedings of the LIA 91, D19–D27.

    Google Scholar 

  69. Brown GH, Hoyler CN, Bierwith RA (1948) Theory and Application of Radio-Frequency Heating. D. Van Nostrand Co., Toronto, New York, London.

    Google Scholar 

  70. Benkowsky G (1990) Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißen. Verlag Technik GmbH, Berlin.

    Google Scholar 

  71. Schubert E, Seefeld T, Zerner I, Grupp M, Sepold G (1999) Hochleistungsdiodenlaser in der Oberflächen-und Fügetechnik. In Laser Opto 31, Heft 1, pp. 75–77.

    Article  Google Scholar 

  72. de Deus AM, Mazumder J (1996) Two-dimensional thermo-mechanical finite element model for laser cladding. Proceedings of the ICALEO, LIA volume 81, LIA, Orlando, USA, pp. 174–183.

    Google Scholar 

  73. Pirch N, Kreutz EW (1998) 3D modelling of heat, momentum and solute transport in laser surface alloying. Conference Modelling of Casting, Welding and Advanced Solidification Processes VIII, 8.–12.06.1998. San Diego, CA.

    Google Scholar 

  74. Kurz W, Fisher DJ (1989) Fundamentals of Solidification. Trans Tech Pub, Switzerland.

    Google Scholar 

  75. Weisheit A, Backes G, Stromeyer R, Gasser A, Wissenbach K, Poprawe R (2001) Powder injection: The key to reconditioning and generating of components using laser cladding. Proceedings of the Materials Week 2001, 1.–4.10.2001, Munich.

    Google Scholar 

  76. Hiraga H, Inoue T, Shimura H, Matsunawa A (1998) Cavitation Erosion Resistant Coating of NiTi Made by Laser Plasma Hybrid Spraying. Proceedings of the ICALEO 1998, Laser Material Processing, volume 85, part 2. Laser Institute of America, Orlando, FL, Section D, pp. 113–120.

    Google Scholar 

  77. Sasaki S (1997) Tribological properties of coating films synthesised by laser assisted plasma spraying. Surface Engineering 13(3), 238–242.

    Google Scholar 

  78. Ohmori, Zhou Z, Eguchi N (1997) Hybrid spraying of zirconia thermal barrier coating with YAG laser combined plasma beam. Transactions of the JWRI 26(1), 99–107.

    Google Scholar 

  79. Coddet C, Marchione T (1993) Process for the Preparation and Coating of a Surface. EP 580534, B1, filed: 21.07.1993, published: 23.04.1997; US 5688564, published: 18.11.1997.

    Google Scholar 

  80. Beyer E, Nowotny S (1998) Method for Applying a Coating by Means of Plasma Spraying While Simultaneously Applying a Continuous Laser Beam. EP903423, A2, A3, filed: 10.09.1998, published: A2 24.03.1999, A3 09.05.2001; US 6,197,386, B1, published: 06.03.2001.

    Google Scholar 

  81. Beyer E, Nowotny St, Bonß St, Zieris R (2001) 3. Zwischenbericht zum FuE-Vorhaben 13N7357/6, Modulare Diodenlaser-Strahlwerkzeuge, Teilvorhaben:Hybridtechniken zum Beschichten und Härten. Fraunhofer IWS (Fraunhofer Institute for Material and Beam Technology), Dresden.

    Google Scholar 

  82. Shen J (1994) Optimierung von verfahren der laseroberflächenbehandlung bei gleichzeitiger pulverzufuhr. Forschungsberichte IFSW. B.G.Teubner Stuttgart, ISBN 3-519-06214-3.

    Google Scholar 

  83. Gasser A (1993) Oberflächenbehandlung metallischer Werkstoffe mit CO2 Laserstrahlung in flüssiger Phase. Wissenschaftsverlag Mainz, ISBN 3-930085-11-9.

    Google Scholar 

  84. Habedank G, Theiler C, Grupp M, Kohn H, Sepold G, Vollertsen F (2003) Laser beam cladding of steel with High Power Diode Lasers. Proceedings of the 2nd International WLT-Conference on Lasers in Manufacturing June 2003, Munich, pp. 45–49.

    Google Scholar 

  85. Habedank G, Theiler C, Seefeld T, Vollertsen F (2003) Beschichten mit Hochleistungslasern. Tagungsband zur 5. Industriefachtagung “Oberflächen-und Wärmebehandlungstechnik” und zum 6. Werkstofftechnischen Kolloquium, Sept. 2003. Eigen verlag, TU Chemnitz, pp. 160–165.

    Google Scholar 

  86. Pawlowski L (1995) The Science and Engineering of thermal spray coatings. John Wiley & Sons, Chichester, etc., pp. 183–185.

    Google Scholar 

  87. Nowotny S, Richter A, Tangermann K, (1999) Surface protection of light metals by one-step laser cladding with oxide ceramics. Journal of Thermal Spray Technology 8(2), 258–262.

    Article  ADS  Google Scholar 

  88. DIN EN 582, 10.1993.

    Google Scholar 

  89. Beyer E, Nowotny St, Bonß St, Zieris R (2001) 4. Zwischenbericht zum FuE-Vorhaben 13N7357/6, Modulare Diodenlaser-Strahlwerkzeuge, Teilvorhaben: Hybridtechniken zum Beschichten und Härten. Fraunhofer IWS (Fraunhofer Institute for Material and Beam Technology), Dresden.

    Google Scholar 

  90. Zieris R, Naumann T, Nowotny St, Eckart G, Füssel U, Beyer E (2000) Neuheiten beim laser-plasma-hybridspritzen. Tagungsband VIII, Workshop Plasmatechnik, Ilmenau 2000. IISLE-Verlag, pp. 50–56.

    Google Scholar 

  91. Zieris R (2003) Neues aus der Forschung, Laserunterstütztes Plasmaspritzen. Galvanotechnik Heft 4 2003, Jahrgang 94. Eugen G. Leunze Verlag, ISSN 0016-4232, pp. 937–938.

    Google Scholar 

  92. Zieris R, Langner G, Berger L-M, Nowotny St (2004) Investigation of AlSi coatings prepared by laser-assisted atmospheric plasma spray on internal diameters of tubes. ITSC 2004, 10.–12.05.2004, Osaka.

    Google Scholar 

  93. Bieler H-W (1995) Oberflächenbehandlung mit CO2-Hochleistungslasern, Angewandte Lasertechnik — Systeme, Werkstoffe, Verfahren. Sonderheft Techn. Rundschau.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Petring, D., Polzin, R., Becker, M. (2007). Applications. In: Bachmann, F., Loosen, P., Poprawe, R. (eds) High Power Diode Lasers. Springer Series in Optical Sciences, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34729-5_7

Download citation

Publish with us

Policies and ethics