Skip to main content

True-Time-Delay Adaptive Array Processing Using Photorefractive Crystals

  • Chapter
Photorefractive Materials and Their Applications 3

Part of the book series: Springer Series in OPTICAL SCIENCES ((SSOS,volume 115))

  • 899 Accesses

Abstract

Radio frequency (RF) signal processing has proven to be a fertile application area when using photorefractive-based, optical processing techniques. This is due to a photorefractive material’s capability to record gratings and diffract off these gratings with optically modulated beams that contain a wide RF bandwidth, and include applications such as the bias-free time-integrating correlator [1], adaptive signal processing, and jammer excision, [2, 3, 4]. Photorefractive processing of signals from RF antenna arrays is especially appropriate because of the massive parallelism that is readily achievable in a photorefractive crystal (in which many resolvable beams can be incident on a single crystal simultaneously—each coming from an optical modulator driven by a separate RF antenna element), and because a number of approaches for adaptive array processing using photorefractive crystals have been successfully investigated [5, 6]. In these types of applications, the adaptive weight coefficients are represented by the amplitude and phase of the holographic gratings, and many millions of such adaptive weights can be multiplexed within the volume of a photorefractive crystal. RF modulated optical signals from each array element are diffracted from the adaptively recorded photorefractive gratings (which can be multiplexed either angularly or spatially), and are then coherently combined with the appropriate amplitude weights and phase shifts to effectively steer the angular receptivity pattern of the antenna array toward the desired arriving signal. Likewise, the antenna nulls can also be rotated toward unwanted narrowband jammers for extinction, thereby optimizing the signal-to-interference-plus-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Psaltis, J. Yu, and J. Hong, “Bias-Free Time-Integrating Optical Correlator Using A Photorefractive Crystal,” Applied Optics 24, 3860–3865 (1985).

    Article  ADS  Google Scholar 

  2. J. H. Hong and T. Y. Chang, “Frequency-Agile RF Notch Filter That Uses Photorefractive 2-Beam Coupling,” Optics Letters 18, 164–166 (1993).

    Article  ADS  Google Scholar 

  3. J. H. Hong and T. Y. Chang, “Adaptive RF Notch Filtering Using Photorefractive 2-Beam Coupling,” IEEE Journal Of Quantum Electronics 30, 314–317 (1994).

    Article  ADS  Google Scholar 

  4. R. M. Montgomery and M. R. Lange, “Photorefractive Adaptive Filter Structure With 40-dB Interference Rejection,” Applied Optics 30, 2844–2849 (1991).

    Article  ADS  Google Scholar 

  5. J. H. Hong and I. Mcmichael, “Novel Optical Technique For Phased-Array Processing,” Optical Engineering 30, 1976–1980 (1991).

    Article  ADS  Google Scholar 

  6. R. T. Weverka, K. Wagner, and A. Sarto, “Photorefractive processing for large adaptive phased arrays,” Applied Optics 35, 1344–1366 (1996).

    Article  ADS  Google Scholar 

  7. L. B. Lambert, M. Arm, and A. Aimette, “Electro-optical signal processing for phased-array antennas,” in Optical and electro-optic information processing, J. Tippett et al., eds., (MIT press, 1965), p. 715.

    Google Scholar 

  8. D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Optical Engineering 31, 2148–2158 (1992).

    Article  ADS  Google Scholar 

  9. T. M. Turpin, F. F. Froehlich, and D. B. Nichols, “Optical tapped delay line,” US Patent 687029, 2003.

    Google Scholar 

  10. R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” In Proc. SPIE, B. M. Hendrickson and G. A. Koepf, eds., Optoelectronic Signal Processing for Phased-Array Antennas II 1217, 207–217 (Bellingham, Wash., USA, 1990).

    Article  ADS  Google Scholar 

  11. G. Kriehn, A. Kiruluta, P. E. X. Silveira, S. Weaver, S. Kraut, K. Wagner, R. T. Weverka, and L. Griffiths, “Optical BEAMTAP Beam-Forming and Jammer-Nulling System for Broadband Phased-Array Antennas,” Applied Optics 39, 212–230 (2000).

    Article  ADS  Google Scholar 

  12. D. Dolfi, T. Merlet, A. Mestreau, and J.-P. Huignard, “Photodetector for microwave signals based on the synchronous drift of photogenerated carriers with a moving interference pattern,” Applied Physics Letters 65, 2931–2933 (1994).

    Article  ADS  Google Scholar 

  13. T. Merlet, D. Dolfi, and J.-P. Huignard, “A Traveling Fringes Photodetector for Microwave Signals,” IEEE Journal of Quantum Electronics 32, 778–783 (1996).

    Article  ADS  Google Scholar 

  14. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, and E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Applied Optics 35, 5765–5775 (1996).

    Article  ADS  Google Scholar 

  15. M. Cronin-Golomb and M. P. Tarr, “Applications of birefringent phase matching for photorefractive devices,” Optics Letters 20, 2252– (1995).

    Article  ADS  Google Scholar 

  16. B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, “Adaptive Antenna Systems,” Proceedings of the IEEE 55, 2143–2161 (1967).

    Article  Google Scholar 

  17. R. T. Compton, Adaptive Antennas (Prentice Hall, 1988).

    Google Scholar 

  18. S. M. Sze, Physics of Semiconductor Devices, 2 ed. (John Wiley, 1981).

    Google Scholar 

  19. A. W. Sarto, Ph.D. thesis, University of Colorado, Boulder, 1996.

    Google Scholar 

  20. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Applied Physics Letters 25, 370–372 (1974).

    Article  ADS  Google Scholar 

  21. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive Indices of Single Domain BaTiO3 for Different Wavelengths and Temperatures,” Physica Status Solidi A 135, K87–K89 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kriehn, G., Wagner, K. (2007). True-Time-Delay Adaptive Array Processing Using Photorefractive Crystals. In: Günter, P., Huignard, JP. (eds) Photorefractive Materials and Their Applications 3. Springer Series in OPTICAL SCIENCES, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34728-8_5

Download citation

Publish with us

Policies and ethics