Skip to main content

On the Role of Conical Waves in Self-focusing and Filamentation of Femtosecond Pulses with Nonlinear Losses

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

Abstract

This chapter concerns with the experimental observations and theoretical investigations on the propagation of intense femtosecond pulses in water and fused silica. It emphasizes spontaneous transformation of a beam into a conical (Bessel-like) wave during the filamentary propagation in media with nonlinear losses. This transformation constitutes an interpretation of the energy reservoir surrounding the high intensity central core of the filament. The adopted model is shown as being able to explain related phenomena such as the formation of multiple filaments and that of X-waves, observed experimentally in both water and fused silica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Strickland, G. Mourou Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  2. A. Braun, G.Korn, X. Liu et al.: Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995).

    Article  ADS  Google Scholar 

  3. H.R. Lange, A. Chiron, J.-F. Ripoche et al.: High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses. Phys. Rev. Lett. 81(8), 1611-1613 (1998).

    Article  ADS  Google Scholar 

  4. W. Liu, O. Kosareva, I.S. Golubtsov et al.: Femtosecond laser pulse filamentation versus optical breakdown in H\(_2\)O. Appl. Phys. B 76(3), 215–229 (2003).

    Article  ADS  Google Scholar 

  5. A. Dubietis, G.Tamošauskas, I.Diomin et al.: Self-guided propagation of femtosecond light pulses in water Opt. Lett. 28, 1269–1271 (2003).

    Article  ADS  Google Scholar 

  6. L.Sudrie, A. Couairon, M. Franco et al.: Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89 186601 (2002).

    Article  ADS  Google Scholar 

  7. V. Sirutkaitis, E. Gaižauskas, V. Kudriašov et al.: Self-guiding, supercontinuum generation and damage in bulk materials induced by femtosecond pulses. SPIE Proc. 4932, 346–357 (2003).

    Article  Google Scholar 

  8. Y.R. Shen: Self-focusing: experimental, Prog. Quant. Electr. 4, 1–34 (1975).

    Article  ADS  Google Scholar 

  9. J.H. Marburger: Self-focusing: theory, Prog. Quant. Electr. 4, 35–110 (1975).

    Article  ADS  Google Scholar 

  10. G.A. Askar’yan: Effects of a gradient of a strong electromagnetic beam on electron and atoms. Soviet Phys.-JETP 15,1151 (1962).

    Google Scholar 

  11. R.Y. Chiao, E. Garmire, C. H. Townes: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964).

    Article  ADS  Google Scholar 

  12. P. L. Kelley: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965).

    Article  ADS  Google Scholar 

  13. C.C. Wang: Length-dependent threshold for stimulated Raman effect and self-focusing of laser beams in liquids. Phys. Rev. Lett. 16, 344–346 (1966).

    Article  ADS  Google Scholar 

  14. M. Hercher: Laser-induced damage in transparent media, J. Opt. Soc. Am. 54, 563 (1964). (See also current book).

    Google Scholar 

  15. V.I. Bespalov, V.I. Talanov: Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).

    ADS  Google Scholar 

  16. P. Lallemand, N. Bloembergen: Self-focusing of laser beams and stimulated Raman gain in liquids, Phys. Rev. Lett. 15(26), 1010-1012 (1965).

    Article  ADS  Google Scholar 

  17. N.F. Pilipetskii, A.R. Rustamov: Observation of self-focusing of light in liquids, JETP Lett. 2, 55–56 (1965).

    Google Scholar 

  18. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing. Appl. Phys. Lett. 23, 628–630 (1973).

    Article  ADS  Google Scholar 

  19. D.C. Brown: High-peak-power lasers, Springer, New York (1981).

    Google Scholar 

  20. A.A. Mak, L.N. Soms, V.A. Fromzel et al.: Nd:Glass Lasers, Nauka, Moscow (1990).

    Google Scholar 

  21. G.I. Stegeman, M. Segev: Optical spatial solitons. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  22. J.H. Marburger, W.G. Wagner: Self-focusing and pulse sharpening mechanism. IEEE J. Quant. Electron. QE-3, 415–416 (1967).

    Article  ADS  Google Scholar 

  23. V.N. Lugovoi A.M. Prokhorov: A possible explanation of the small-scale self-focusing filaments, JETP Lett. 7, 117–119 (1968).

    ADS  Google Scholar 

  24. M.M. Loy Y.R. Shen: Small-scale filaments in liquids and tracks of moving foci, Phys. Rev. Lett. 22, 994–997 (1969).

    Article  ADS  Google Scholar 

  25. A. Brodeur, C.Y. Chien, F.A. Ilkov et al.: Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22, 304–306 (1997).

    Article  ADS  Google Scholar 

  26. M. Mlejnek, E.M. Wright, J.V. Moloney: Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998).

    Article  ADS  Google Scholar 

  27. A. Dubietis, A. Couairon, E. Kučinskas et al.: Measurement and calculation of nonlinear absorption assotiated to femtosecond filaments in water. Appl. Phys. B 84, 439–446 (2006).

    Article  ADS  Google Scholar 

  28. S.N. Vlasov, V.A. Petrishchev, V.I. Talanov: Application of the method of moments to certain problems in the propagation of partially coherent light beams. Radiophys. Quant. Electro. 14, 1062–1070 (1971).

    Article  ADS  Google Scholar 

  29. J.H. Marburger, E. Dawes: Dynamical formation of a small-scale filament. Phys. Rev. Lett. 21, 556–558 (1968).

    Article  ADS  Google Scholar 

  30. B.J. LeMesurier: Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularisations. Physica D 138, 334–343 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. A. Dubietis, E. Gaižauskas, G. Tamošauskas et al.: Light filaments without self-channeling. Phys. Rev. Lett. 92, 253903 (2004).

    Article  ADS  Google Scholar 

  32. S. Polyakov, F. Yoshino, G. Stegeman: Interplay between self-focusing and high-order multiphoton absorption. JOSA B 18, 1891–1895 (2001).

    Article  ADS  Google Scholar 

  33. P. Saari, K. Reivelt: Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett. 79, 4135–4138 (1997).

    Article  ADS  Google Scholar 

  34. G. Valiulis, J. Kilius, O. Jedrkiewicz et al.: Space–time nonlinear compression and three-dimensional complex trapping in normal dispersion. In: OSA Trends in Optics and Photonics (TOPS), Technical Digest of the Quantum Electronics and Laser Science Conference vol. 57. Optical Society of America, Washington DC, pp. QPD10 1–2 (2001).

    Google Scholar 

  35. P. Di Trapani, G. Valiulis, A. Piskarskas et al.: Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003).

    Article  ADS  Google Scholar 

  36. T. Brabec, F. Krausz: Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett 78, 3282–3285 (1997).

    Article  ADS  Google Scholar 

  37. L.V. Keldysh: Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    MathSciNet  Google Scholar 

  38. A. Couairon, E. Gaižauskas, D. Faccio et al.: Nonlinear X-wave formation by femtosecond filamentation in Kerr media. Phys. Rev. E 73, 016608 (2006).

    Article  ADS  Google Scholar 

  39. S. Tzortzakis, B. Lamouroux, A. Chiron et al.: Femtosecond and picosecond ultraviolet laser filaments in air: experiments and simulations. Opt.Commun. 197, 131–143 (2001).

    Article  ADS  Google Scholar 

  40. M. Soljačić, S. Sears, M. Segev: Self-trapping of “necklace” beams in self-focusing media. Phys. Rev. Lett. 81, 4851–4854 (1998).

    Article  ADS  Google Scholar 

  41. J. Durnin, J.J. Miceli, J.H. Eberly: Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    Article  ADS  Google Scholar 

  42. M.A. Porras, A. Parola, D. Faccio et al.: Nonlinear unbalanced bessel beams: Stationary conical waves supported by nonlinear losses. Phys. Rev. Lett. 93, 153902 (2004).

    Article  ADS  Google Scholar 

  43. A. Alexandrescu, V.M. Prez-Garcia: Matter-wave solitons supported by dissipation. Phys.Rev.A 73, 053610 (2006).

    Article  ADS  Google Scholar 

  44. E. Garmire, R.Y. Chiao, C.H. Townes: Dynamics and characteristics of the self- of intense light beams. Phys. Rev. Lett. 16, 347–349 (1966).

    Article  ADS  Google Scholar 

  45. F. Courvoisier, V. Boutou, J. Kasparian et al.: Ultraintense light filaments transmitted through clouds. Appl. Phys. Lett. 83, 213–215 (2003).

    Article  ADS  Google Scholar 

  46. G. Méchain, G. Méjean, R. Ackermann et al.: Propagation of fs-TW laser filaments in adverse atmospheric conditions. Appl. Phys. B 80, 785–789 (2005).

    Article  ADS  Google Scholar 

  47. M. Kolesik, J.V. Moloney: Self-healing femtosecond light filaments. Opt. Lett. 29(6), 590–592 (2004).

    Article  ADS  Google Scholar 

  48. A. Dubietis, E. Kučinskas, G. Tamošauskas, et al. Self-reconstruction of light filaments. Opt. Lett. 29, 2893–2895 (2004).

    Article  ADS  Google Scholar 

  49. D. Mc Gloin, K. Dholakia: Bessel beams: diffraction in a new light, Contemporary Phys. 46(1) 15–28 (2005).

    Article  ADS  Google Scholar 

  50. W. Liu, F. Théberge, E. Arévalo et al.: Experiments and simulations on the energy reservoir effect in femtosecond light filaments. Optics Lett., year, 30(19) 2602–2604 (2005).

    Article  ADS  Google Scholar 

  51. E. Gaižauskas, E. Vanagas, V. Jarutis et al.: Discrete damage traces from filamentation of femtosecond pulses. Opt. Lett. 31, 80–82 (2006).

    Article  ADS  Google Scholar 

  52. M. A. Porras, P. Di Trapani: Localized and stationary light wave modes in dispersive media. Phys. Rev. E 69, 066606 (2004).

    Article  ADS  Google Scholar 

  53. D. Faccio M.A. Porras, A. Dubietis et al.: Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett. 96, 193901 (2006).

    Article  ADS  Google Scholar 

  54. M. Kolesik, E.M. Wright, J.V. Moloney: Dynamic nonlinear X waves for femtosecond pulse propagation in water. Phys. Rev. Lett. 92, 253901 (2004).

    Article  ADS  Google Scholar 

  55. D. Faccio, A. Matijosius, A. Dubietis et al.: Near- and far-field evolution of laser pulse filaments in Kerr media. Phys. Rev. E 72, 037601 (2005).

    Article  ADS  Google Scholar 

  56. M. Kolesik, E.M. Wright, J.V. Moloney: Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media, Opt. Expr., 13(26), 10729–10741 (2005).

    Article  ADS  Google Scholar 

  57. D.Faccio, M.A. Porras, A. Dubietis et al.: Angular and chromatic dispersion in Kerr-driven conical emission, Opt. Commun. 265, 672–677 (2006).

    Article  ADS  Google Scholar 

  58. D. Faccio, P. Di Trapani, S. Minardi et al.: Far-field spectral characterization of conical emission and filamentation in Kerr media. J. Opt. Soc. Am. B 22(4), 862–869 (2005).

    Article  ADS  Google Scholar 

  59. M. Mlejnek, M. Kolesik, E.M. Wright et al.: Optically turbulent femtosecond light guide in air. Phys. Rev. Lett. 83, 2938–2941 (1999).

    Article  ADS  Google Scholar 

  60. G. Fibich, B. Ilan: Deterministic vectorial effects lead to multiple filamentation. Opt. Lett. 58, 840–842 (2001).

    Article  ADS  Google Scholar 

  61. G. Méchain, A. Couairon, M. Franco et al. Organizing multiple femtosecond filaments in air. Phys. Rev. Lett. 93, 035003 (2004).

    Article  ADS  Google Scholar 

  62. A. Dubietis, G. Tamošauskas, G. Fibich et al.: Multiple filamentation induced by input-beam ellipticity, Opt. Lett. 29, 1126–1128 (2004).

    Article  ADS  Google Scholar 

  63. V. Kudriašov, E. Gaižauskas, V. Sirutkaitis: Beam transformation and permanent modification in fused silica induced by femtosecond filaments. J. Opt. Soc. Am. B 22, 2619–2627 (2005).

    Article  ADS  Google Scholar 

  64. V.P. Kandidov, V. Yu Fedorov: Properties of self-focusing of elliptic beams. Quant Electron. 34(12),1163–1168 (2004).

    Article  ADS  Google Scholar 

  65. K. M. Davis, K. Miura, K. Sugimoto et al.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1709–1711 (1996).

    Article  ADS  Google Scholar 

  66. L. Sudrie, M. Franco, B. Prade et al.: Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 171, 279–284 (1999).

    Article  ADS  Google Scholar 

  67. K. Y Yamada, W. Watanabe, T. Toma et al.: In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. Opt. Lett. 26, 19 (2001).

    Google Scholar 

  68. M. Kamata, M. Obara: Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser. Appl. Phys. A 78, 85–88 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gaižauskas, E. et al. (2009). On the Role of Conical Waves in Self-focusing and Filamentation of Femtosecond Pulses with Nonlinear Losses. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_19

Download citation

Publish with us

Policies and ethics