Skip to main content

Spatial and Temporal Dynamics of Collapsing Ultrashort Laser Pulses

  • Chapter
Self-focusing: Past and Present

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

Abstract

In nonlinear optics, a wave collapse manifests itself as the self-focusing of light. There exist a number of universal features associated with wave collapse, such as self-similar evolution, pulse splitting, filamentation, and shock formation, in which nonlinear optics has offered an unparalleled opportunity for study and comparison of theory with experiment. This chapter reviews recent theoretical and experimental work in which such phenomena have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.Y. Chiao, E. Garmire, C.H. Townes: Self-trapping of optical beams, Phys. Rev. Lett. 13, 479–481 (1964).

    Article  ADS  Google Scholar 

  2. V.I. Talanov: Self-focusing of wave beams in nonlinear media, JETP Lett.-USSR 2, 138 (1965).

    ADS  Google Scholar 

  3. P.L. Kelley: Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005–1007 (1965).

    Article  ADS  Google Scholar 

  4. D.E. Spence, P.N. Kean, W. Sibbett: 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  5. J.H. Glownia, J. Misewich, P.P. Sorokin: Ultrafast ultraviolet pump probe apparatus, J. Opt. Soc. Am. B-Opt. Phys. 3, 1573–1579 (1986).

    Article  ADS  Google Scholar 

  6. R.R. Alfano, The Supercontinuum Laser Source. Springer-Verlag, New York (1989).

    Google Scholar 

  7. J. Kasparian, M. Rodriguez, G. Mejean et al.: White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).

    Article  ADS  Google Scholar 

  8. G. Fibich, A.L. Gaeta: Critical power for self-focusing in bulk media and in hollow waveguides, Opt. Lett. 25, 335–337 (2000).

    Article  ADS  Google Scholar 

  9. G.M. Fraiman: Asymptotic stability of manifold of self-similar solutions on self-focusing, Sov. Phys. JETP 61, 228–233(1985).

    MathSciNet  Google Scholar 

  10. M.J. Landman, G.C. Papanicolaou, C. Sulem et al.: Rate of blowup for solution of the nonlinear Schrodinger equation at critical dimension, Phys.Rev. A 38, 3837–3843 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. B.J. Mesurier, G.C. Papanicolaou, C. Sulem et al.: Local structure on the self-focusing singularity of the cubic Schrödinger equation, Physica D. Nonlinear Phenomena 32, 210–226 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Fibich, B. Ilan: Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation, J. Opt. Soc. Am. B-Opt. Phys. 17, 1749–1758 (2000).

    Article  ADS  Google Scholar 

  13. K.D. Moll, A.L. Gaeta, G. Fibich: Self-similar optical wave collapse: observation of the townes profile, Phys. Rev. Lett. 90, 203902 (2003).

    Article  ADS  Google Scholar 

  14. A. Braun, G. Korn, X. Liu et al.: Self-channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20, 73–75 (1995).

    Article  ADS  Google Scholar 

  15. V.I. Bespalov, V.I. Talanov: Filamentary structure of light beams in nonlinear liquids, JETP Lett.-USSR 3, 307–309 (1966).

    ADS  Google Scholar 

  16. G. Fibich, S. Eisenmann, B. Ilan et al.: Self-focusing distance of very high power laser pulses, Opt. Express 13, 5897–5903 (2005).

    Article  ADS  Google Scholar 

  17. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Relationship of self-focusing to spatial instability modes, Appl. Phys. Lett. 24, 178–180 (1974).

    Article  ADS  Google Scholar 

  18. G. Fibich, N. Gavisha, X.P. Wang: New singular solutions of the nonlinear Schrodinger equation, Physica D-Nonlinear Phenomena 211, 193–220 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. T.D. Grow, A.A. Ishaaya, L.T. Vuong et al.: Collapse dynamics of super-Gaussian beams, Opt. Express 14, 5468–5475 (2006).

    Article  ADS  Google Scholar 

  20. L.T. Vuong, T.D. Grow, A. Ishaaya et al.: Collapse of optical vortices, Phys. Rev. Lett. 96, 133901 (2006).

    Article  ADS  Google Scholar 

  21. A.L. Gaeta: Collapsing light really shines, Science 301, 54–55 (2003).

    Article  Google Scholar 

  22. T. Brabec, F. Krausz: Nonlinear optical pulse propagation in the single-cycle regime, Phys. Rev. Lett. 78, 3282–3285 (1997).

    Article  ADS  Google Scholar 

  23. J.K. Ranka, A.L. Gaeta: Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses, Opt. Lett. 23, 534–536 (1998).

    Article  ADS  Google Scholar 

  24. J.E. Rothenberg: Space–time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses, Opt. Lett. 17, 1340–1342 (1992).

    Article  ADS  Google Scholar 

  25. T.K. Gustafson, P.L. Kelley, R.Y. Chiao et al.: Self-trapping in media with saturation of nonlinear index, Appl. Phys. Lett. 12, 165–167 (1968).

    Article  ADS  Google Scholar 

  26. G.Z. Yang, Y.R. Shen: Spectral broadening of ultrashort pulses in a nonlinear medium, Opt. Lett. 9, 510–512 (1984).

    Article  ADS  Google Scholar 

  27. J.E. Rothenberg, D. Grischkowsky: Observation of the formation of an optical-intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers, Phys. Rev. Lett. 62, 531–534 (1989).

    Article  ADS  Google Scholar 

  28. N.A. Zharova, A.G. Litvak, T.A. Petrova et al.: Multiple fractionation of wave structures in a nonlinear medium, JETP Lett.-USSR 44, 13–17 (1986).

    ADS  Google Scholar 

  29. J.E. Rothenberg: Pulse splitting during self-focusing in normally dispersive media, Opt. Lett. 17, 583–585 (1992).

    Article  ADS  Google Scholar 

  30. P. Chernev, V. Petrov: Self-focusing of light-pulses in the presence of normal group-velocity dispersion, Opt. Lett. 17, 172–174 (1992).

    Article  ADS  Google Scholar 

  31. G.G. Luther, A.C. Newell, J.V. Moloney et al.: Short-pulse conical emission and spectral broadening in normally dispersive media, Opt. Lett. 19, 789–791 (1994).

    Article  ADS  Google Scholar 

  32. G. Fibich, V.M. Malkin, G.C. Papanicolaou: Beam self-focusing in the presence of a small normal time dispersion, Phys. Rev. A 52, 4218–4228 (1995).

    Article  ADS  Google Scholar 

  33. J. K. Ranka, R. W. Schirmer and A. L. Gaeta: Observation of pulse splitting in nonlinear dispersive media, Phys. Rev. Lett. 77, 3783-3786 (1996).

    Article  ADS  Google Scholar 

  34. S.A. Diddams, H.K. Eaton, A.A. Zozulya et al.: Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media, Opt. Lett. 23, 379–381 (1998).

    Article  ADS  Google Scholar 

  35. H.K. Eaton, T.S. Clement, A.A. Zozulya et al.: Investigating nonlinear femtosecond pulse propagation with frequency-resolved optical gating, IEEE J. Quantum Electron. 35, 451–458 (1999).

    Article  ADS  Google Scholar 

  36. G. Fibich, W.Q. Ren, X.P. Wang: Numerical simulations of self-focusing of ultrafast laser pulses, Phys. Rev. E 67, 056603 (2003).

    Google Scholar 

  37. J.K. Ranka, A.L. Gaeta, unpublished.

    Google Scholar 

  38. R.R. Alfano, S.L. Shapiro: Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24, 592–594 (1970).

    Article  ADS  Google Scholar 

  39. P.L. Baldeck, P.P. Ho, R.R. Alfano: Effects of self-induced and cross-phase modulations on the generation of picosecond and femtosecond white-light supercontinua, Revue De Physique Appliquee 22, 1677–1694 (1987).

    Article  Google Scholar 

  40. P.B. Corkum, P.P. Ho, R.R. Alfano et al.: Generation of infrared supercontinuum covering 3–14 µm in dielectrics and semiconductors, Opt. Lett. 10, 624–626 (1985).

    Article  ADS  Google Scholar 

  41. A. Brodeur, S.L. Chin: Band-gap dependence of the ultrafast white-light continuum, Phys. Rev. Lett. 80, 4406–4409 (1998).

    Article  ADS  Google Scholar 

  42. W.L. Smith, P. Liu, N. Bloembergen: Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser, Phys. Rev. A 15, 2396–2403 (1977).

    Article  ADS  Google Scholar 

  43. R.L. Fork, C.V. Shank, C. Hirlimann et al.: Femtosecond white-light continuum pulses, Opt. Lett. 8, 1–3 (1983).

    Article  ADS  Google Scholar 

  44. P.B. Corkum, C. Rolland, T. Srinivasanrao: Supercontinuum generation in gases, Phys. Rev. Lett. 57, 2268–2271 (1986).

    Article  ADS  Google Scholar 

  45. J.H. Glownia, J. Misewich, P.P. Sorokin: Ultrafast ultraviolet pump probe apparatus, J. Opt. Soc. Am. B-Opt. Phys. 3, 1573–1579 (1986).

    Article  ADS  Google Scholar 

  46. T.R. Gosnell, A.J. Taylor, D.P. Greene: Supercontinuum generation at 248 nm using high-pressure gases, Opt. Lett. 15, 130–132 (1990).

    Article  ADS  Google Scholar 

  47. A.L. Gaeta: Catastrophic collapse of ultrashort pulses, Phys. Rev. Lett. 84, 3582–3585 (2000).

    Article  ADS  Google Scholar 

  48. E. Yablonovitch, N. Bloembergen: Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media, Phys. Rev. Lett. 29, 907–909 (1972).

    Article  ADS  Google Scholar 

  49. E.T.J. Nibbering, P.F. Curley, G. Grillon et al.: Conical emission from self-guided femtosecond pulses in air, Opt. Lett. 21, 62–64 (1996).

    Article  ADS  Google Scholar 

  50. A. Brodeur, C.Y. Chien, F.A. Ilkov et al.: Moving focus in the propagation of ultrashort laser pulses in air, Opt. Lett. 22, 304–306 (1997).

    Article  ADS  Google Scholar 

  51. P. Rairoux, H. Schillinger, S. Niedermeier et al.: Remote sensing of the atmosphere using ultrashort laser pulses, Appl. Phys. B-Lasers Opt. 71, 573–580 (2000).

    Article  ADS  Google Scholar 

  52. J.C. Diels, R. Bernstein, K.E. Stahlkopf et al.: Lightning control with lasers, Sci. Am. 277, 50–55 (1997).

    Article  Google Scholar 

  53. S. Tzortzakis, B. Prade, M. Franco et al.: Femtosecond laser–guided electric discharge in air, Phys. Rev. E 6405, 057401 (2001).

    Article  ADS  Google Scholar 

  54. B. Prade, M. Franco, A. Mysyrowicz et al.: Spatial mode cleaning by femtosecond filamentation in air, Opt. Lett. 31, 2601–2603 (2006).

    Article  ADS  Google Scholar 

  55. C.P. Hauri, W. Kornelis, F.W. Helbing et al.: Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B-Lasers Opt. 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  56. G. Stibenz, N. Zhavoronkov, G. Steinmeyer: Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament, Opt. Lett. 31, 274–276 (2006).

    Article  ADS  Google Scholar 

  57. A. Couairon, J. Biegert, C.P. Hauri et al.: Self-compression of ultra-short laser pulses down to one optical cycle by filamentation, J. Mod. Opt. 53, 75–85 (2006).

    Article  ADS  MATH  Google Scholar 

  58. M. Mlejnek, E.M. Wright, J.V. Moloney: Dynamic spatial replenishment of femtosecond pulses propagating in air, Opt. Lett. 23, 382–384 (1998).

    Article  ADS  Google Scholar 

  59. O.G. Kosareva, V.P. Kandidov, A. Brodeur et al.: Conical emission from laser–plasma interactions in the filamentation of powerful ultrashort laser pulses in air, Opt. Lett. 22, 1332–1334 (1997).

    Article  ADS  Google Scholar 

  60. N. Akozbek, M. Scalora, C.M. Bowden et al.: White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air, Opt. Commun. 191, 353–362 (2001).

    Article  ADS  Google Scholar 

  61. A. Couairon, S. Tzortzakis, L. Berge et al.: Infrared femtosecond light filaments in air: Simulations and experiments, J. Opt. Soc. Am. B-Opt. Phys. 19, 1117–1131 (2002).

    Article  ADS  Google Scholar 

  62. A. Talebpour, S. Petit, S.L. Chin: Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air, Opt. Commun. 171, 285–290 (1999).

    Article  ADS  Google Scholar 

  63. S. Tzortzakis, L. Berge, A. Couairon et al.: Breakup and fusion of self-guided femtosecond light pulses in air, Phys. Rev. Lett. 86, 5470–5473 (2001).

    Article  ADS  Google Scholar 

  64. C. Conti, S. Trillo, P. Di Trapani et al.: Nonlinear electromagnetic X waves, Phys. Rev. Lett. 90, 170406 (2003).

    Article  ADS  Google Scholar 

  65. D. Faccio, M.A. Porras, A. Dubietis et al.: Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses, Phys. Rev. Lett. 96, 193901 (2006).

    Article  ADS  Google Scholar 

  66. M. Mlejnek, M. Kolesik, J.V. Moloney et al.: Optically turbulent femtosecond light guide in air, Phys. Rev. Lett. 83, 2938–2941 (1999).

    Article  ADS  Google Scholar 

  67. J. Kasparian, R. Sauerbrey, D. Mondelain et al.: Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere, Opt. Lett. 25, 1397–1399 (2000).

    Article  ADS  Google Scholar 

  68. S. Tzortzakis, L. Sudrie, M. Franco et al.: Self-guided propagation of ultrashort IR laser pulses in fused silica, Phys. Rev. Lett. 87, 213902 (2001).

    Article  ADS  Google Scholar 

  69. Z.X. Wu, H.B. Jiang, L. Luo et al.: Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica, Opt. Lett. 27, 448–450 (2002).

    Article  ADS  Google Scholar 

  70. K.D. Moll, A.L. Gaeta: Role of dispersion in multiple-collapse dynamics, Opt. Lett. 29, 995–997 (2004).

    Article  ADS  Google Scholar 

  71. A. Matijosius, J. Trull, P. DiTrapani et al.: Nonlinear space–time dynamics of ultrashort wave packets in water, Opt. Lett. 29, 1123–1125 (2004).

    Article  ADS  Google Scholar 

  72. M.A. Porras, A. Dubietis, E. Kucinskas et al.: From X- to O-shaped spatiotemporal spectra of light filaments in water, Opt. Lett. 30, 3398–3400 (2005).

    Article  ADS  Google Scholar 

  73. S.N. Vlasov, L.V. Piskunova, V.I. Talanov: Three-dimensional wave collapse in a nonlinear Schrodinger-equation model, Sov. Phys. JETP 68, 125–1128 (1989).

    Google Scholar 

  74. Y. Silberberg: Collapse of optical pulses, Opt. Lett. 15, 1282–1284 (1990).

    Article  ADS  Google Scholar 

  75. K.D. Moll, A.L. Gaeta: Role of dispersion in multiple-collapse dynamics, Opt. Lett. 29, 995–997 (2004).

    Article  ADS  Google Scholar 

  76. L. Berge, S. Skupin: Self-channeling of ultrashort laser pulses in materials with anomalous dispersion, Phys. Rev. E 71, 065601 (2005).

    Article  ADS  Google Scholar 

  77. R. McLeod, K. Wagner, S. Blair: (3+1)-dimensional optical soliton dragging logic, Phys. Rev. A 52, 3254–3278 (1995).

    Article  ADS  Google Scholar 

  78. I.G. Koprinkov, A. Suda, P.Q. Wang et al.: Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation, Phys. Rev. Lett. 84, 3847–3850 (2000).

    Article  ADS  Google Scholar 

  79. A.L. Gaeta, F. Wise: Comment on “Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation,” Phys. Rev. Lett. 87, 229401 (2001).

    Article  ADS  Google Scholar 

  80. H.S. Eisenberg, R. Morandotti, Y. Silberberg et al.: Kerr spatiotemporal self-focusing in a planar glass waveguide, Phys. Rev. Lett. 87, 043902 (2001).

    Article  ADS  Google Scholar 

  81. X. Liu, K. Beckwitt, and F. Wise: Two-dimensional optical spatio-temporal solitons in quadratic media, Phys. Rev. E 62, 1328–1340 (2000).

    Article  ADS  Google Scholar 

  82. M. Soljacic, S. Sears, M. Segev: Self-trapping of “Necklace” Beams in self-focusing Kerr media, Phys. Rev. Lett. 81, 4851–4854 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gaeta, A.L. (2009). Spatial and Temporal Dynamics of Collapsing Ultrashort Laser Pulses. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_16

Download citation

Publish with us

Policies and ethics