Skip to main content

Periodic Filamentation and Supercontinuum Interference

  • Chapter
Self-focusing: Past and Present

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

  • 4290 Accesses

Abstract

In this chapter, supercontinuum (SC) generation and filamentation in BK7 glass were controlled by Fresnel diffraction from a circular aperture or a straight edge. We demonstrated the salient coherent property of multiple SC sources by the periodic filamentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Couairon, L. Bergé: Light filaments in air for ultraviolet and infrared wavelengths. Phys. Rev. Lett. 88, 135003 (2002).

    Article  ADS  Google Scholar 

  2. V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov et al.: Self–transformation of a powerful femtosecond laser pulse into a white–light laser pulse in bulk optical media (or supercontinuum generation). Appl. Phys. B 77, 149–165 (2003).

    Article  ADS  Google Scholar 

  3. A.J. Campillo, J.E. Pearson, S.L. Shapiro et al.: Fresnel diffraction effects in the design of high-power laser systems. Appl. Phys. Lett. 23, 85–87 (1973).

    Article  ADS  Google Scholar 

  4. J. Kasparian, M. Rodriguez, G. Méjean et al.: White-light filaments for atmospheric analysis. Science 301, 61–64 (2003).

    Article  ADS  Google Scholar 

  5. P. Rairoux, H. Schillinger, S. Niedermeier et al.: Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B 71, 573–580 (2000).

    Article  ADS  Google Scholar 

  6. Q. Luo, W. Liu, S.L. Chin: Lasing action in air-induced by ultrafast laser filamentation. Appl. Phys. B 76, 337–340 (2003).

    Article  ADS  Google Scholar 

  7. W. Watanabe, T. Asano, K. Yamada et al.: Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491–2493 (2003).

    Article  ADS  Google Scholar 

  8. H. Wille, M. Rodriguez, J. Kasparian et al.: Teramobile: A mobile femtosecond–terawatt laser and detection system. Eur. Phys. J. AP 20, 183–190 (2002).

    Article  ADS  Google Scholar 

  9. G. Méchain, A. Couairon, M. Franco et al.: Organizing multiple femtosecond filaments in air. Phys. Rev. Lett. 93, 035003 (2004).

    Article  ADS  Google Scholar 

  10. H. Schroeder, S.L. Chin: Visualization of the evolution of multiple filaments in methanol. Opt. Commun. 234, 399–406 (2004).

    Article  ADS  Google Scholar 

  11. H. Schroeder, J. Liu, S.L. Chin: From random to controlled small-scale filamentation in water. Opt. Express 12, 4768–4774 (2004).

    Article  ADS  Google Scholar 

  12. K. Cook, R. McGeorge, A.K. Kar et al.: Coherent array of white-light continuum filaments produced by diffractive microlenses. Appl. Phys. Lett. 86, 021105 (2005).

    Article  ADS  Google Scholar 

  13. G. Fibich, S. Eisenmann, B. Ilan et al.: Control of multiple filamentation in air. Opt. Lett. 29, 1772–1774 (2004).

    Article  ADS  Google Scholar 

  14. A. Dubietis, G. Tamosăuskas, G. Fibich et al.: Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 29, 1126–1128 (2004).

    Article  ADS  Google Scholar 

  15. R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970).

    Article  ADS  Google Scholar 

  16. R.R. Alfano, S.L. Shapiro: Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970).

    Article  ADS  Google Scholar 

  17. R.R. Alfano, S.L. Shapiro: Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Phys. Rev. Lett. 24, 1217–1220 (1970).

    Article  ADS  Google Scholar 

  18. R.R. Alfano: The Supercontinuum Laser Source. Springer, New York (2005).

    Google Scholar 

  19. I. Hartl, X.D. Li, C. Chudoba et al.: Ultrahigh-resolution optical coherence tomography using continuum generation in air–silica microstructure optical fiber. Opt. Lett. 26, 608–610 (2001).

    Article  ADS  Google Scholar 

  20. S.A. Diddams, D.J. Jones, J. Ye et al.: Direct link between microwave and optical frequencies with a 300-THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).

    Article  ADS  Google Scholar 

  21. H. Takara: Multiple optical carrier generation from a supercontinuum source. Opt. Photon. News 13, 48–51 (2002).

    Article  ADS  Google Scholar 

  22. A. Baltuška, T. Fuji, T. Kobayashi: Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).

    Article  ADS  Google Scholar 

  23. A. Baltuška, M.Uiberacker, E. Goulielmakis et al.: Phase-controlled amplification of few-cycle laser pulses. IEEE JSTQE 9, 972–989 (2003).

    Google Scholar 

  24. S.L. Chin, S. Petit, F. Borne et al.: The white light supercontinuum is indeed an ultrafast white light laser. Jpn. J. Appl. Phys. 38, L126–L128 (1999).

    Article  ADS  Google Scholar 

  25. W. Watanabe, K. Itoh: Spatial coherence of supercontinuum emitted from multiple filaments. Jpn. J. Appl. Phys. 40, 592–595 (2001).

    Article  ADS  Google Scholar 

  26. X. Gu, M. Kimmel, A.P. Shreenath et al.: Experimental studies of the coherent of microstructure–fiber supercontinuum. Opt. Express 11, 2697–2703 (2003).

    Article  ADS  Google Scholar 

  27. F. Lu, W.H. Knox: Generation of a broadband continuum with spectral coherence in tapered single-mode optical fibers. Opt. Express 12, 347–353 (2004).

    Article  ADS  Google Scholar 

  28. I. Zeylikovich, V. Kartazaev, R.R. Alfano: Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber. J. Opt. Soc. Am. B 22, 1453–1460 (2005).

    Article  ADS  Google Scholar 

  29. N. Bloembergen, P. Lallemand: Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering. Phys. Rev. Lett. 16, 81–84 (1966).

    Article  ADS  Google Scholar 

  30. R.G. Brewer: Frequency shifts in self-focused light. Phys. Rev. Lett. 19, 8–10 (1967).

    Article  ADS  Google Scholar 

  31. A.C. Cheung, D.M. Rank, R.Y. Chiao et al.: Phase modulation of Q-switched laser beams in small-scale filaments. Phys. Rev. Lett. 20, 786–789 (1968).

    Article  ADS  Google Scholar 

  32. W.J. Jones, B.P. Stoicheff: Inverse Raman spectra: induced absorption at optical frequencies. Phys. Rev. Lett. 13, 657–659 (1964).

    Article  ADS  Google Scholar 

  33. F. Shimizu: Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett. 19, 1097–1100 (1967).

    Article  ADS  Google Scholar 

  34. A.L. Gaeta: Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582–3585 (2000).

    Article  ADS  Google Scholar 

  35. N. Aközbek, M. Scalora, C.M. Bowden et al.: White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air. Opt. Commun. 191, 353–362 (2001).

    Article  ADS  Google Scholar 

  36. R. Chiao, B.P. Stoicheff: Angular dependence of maser-stimulated Raman radiation in calcite. Phys. Rev. Lett. 12, 290–293 (1964).

    Article  ADS  Google Scholar 

  37. K. Shimoda: Angular distribution of stimulated Raman radiation. Jpn. J. Appl. Phys. 5, 86–92 (1966).

    Article  ADS  Google Scholar 

  38. K. Shimoda: Gain, frequency shift, and angular distribution of stimulated Raman radiations under multimode excitation. Jpn. J. Appl. Phys. 5, 615–623 (1966).

    Article  ADS  Google Scholar 

  39. C.A. Sacchi, C.H. Townes, J.R. Lifsitz: Anti-Stokes generation in trapped filaments of light. Phys, Rev. 174, 439–447 (1968).

    Article  ADS  Google Scholar 

  40. R.Y. Chiao, P.L. Kelley, E. Garmire: Stimulated four-photon interaction and its influence on stimulated Rayleigh-wing scattering. Phys. Rev. Lett. 17, 1158–1161 (1966).

    Article  ADS  Google Scholar 

  41. Q. Xing, K.M. Yoo, R.R. Alfano: Conical emission by four-photon parametric generation by using femtosecond laser pulses. Appl. Opt. 32, 2087–289 (1993).

    Article  ADS  Google Scholar 

  42. V.I. Bespalov, V.I. Talanov: Filamentary structure of beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).

    ADS  Google Scholar 

  43. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing. Appl. Phys. Lett. 23, 628–630 (1973).

    Article  ADS  Google Scholar 

  44. X. Ni, C. Wang, X. Liang et al.: Fresnel diffraction supercontinuum generation. IEEE JSTQE 10, 1229–1232 (2004).

    Google Scholar 

  45. K. Cook, A.K. Kar, R.A. Lamb: White-light filaments induced by diffraction effects. Opt. Express 13, 2025–2031 (2005).

    Article  ADS  Google Scholar 

  46. M. Born, E. Wolf: Principles of Optics. 6th ed., Pergamon Press, Oxford (1980).

    Google Scholar 

  47. M. Bellini, T.W. Hänsch: Phase-locked white-light continuum pulses: toward a universal optical frequency–comb synthesizer. Opt. Lett. 25, 1049–1051 (2000).

    Article  ADS  Google Scholar 

  48. K. Cook, A.K. Kar, R.A. Lamb: White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett. 83, 3861–3863 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ni, X., Alfano, R.R. (2009). Periodic Filamentation and Supercontinuum Interference. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_10

Download citation

Publish with us

Policies and ethics