Skip to main content

Fabrication of Optical Waveguides in Dielectrics by Femtosecond Laser Pulses

  • Chapter
Microoptics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 97))

  • 611 Accesses

Abstract

Modern communication systems are based on integrated optical devices to control the properties of light in all-optical networks. Key elements within these networks are active and passive waveguides, splitters, connectors, and filters. The optical function of these elements is based on a spatial refractiveindex modification within the glass matrix, which is typically fabricated by ionic exchange or diffusion processes. Although these technologies are well established and very successful, their application is, in general, restricted to the generation of planar (two-dimensional) elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, K.M., Miura, K., Sugimoto, N., and Hirao, K., Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996).

    Article  ADS  Google Scholar 

  2. Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.-H., Callan, J.P., and Mazur, E., Three-dimensional optical storage inside transparent materials, Opt. Lett. 21, 2023–2025 (1996).

    Article  ADS  Google Scholar 

  3. Glezer, E.N. and Mazur, E., Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett. 71, 882–884 (1997).

    Google Scholar 

  4. Miura, K., Qiu, J., Inouye, H., Mitsuyu, T., and Hirao, K., Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl. Phys. Lett. 71, 3329–3331 (1997).

    Google Scholar 

  5. Homoelle, D., Wielandy, S., Gaeta, A.L., Borrelli, N F., and Smith, C., Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses, Opt. Lett. 24, 1311–1313 (1999).

    Article  ADS  Google Scholar 

  6. Kondo, Y., Nouchi, K., Mitsuyu, T., Watanabe, M., Kazansky, P G., and Hirao, K., Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses, Opt. Lett. 24, 646–648 (1999).

    Article  ADS  Google Scholar 

  7. Sudrie, L., Franco, M., Prade, B., and Mysyrowicz, A., Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses, Opt. Commun. 171, 279–284 (1999).

    Article  ADS  Google Scholar 

  8. Korte, F., Adams, S., Egbert, A., Fallnich, C., Ostendorf, A., Nolte, S., Will, M., Ruske, J.-P., Chichkov, B.N., and Tünnermann, A., Sub-diffraction limited structuring of solid targets with femtosecond laser pulses, Opt. Express. 7, 41–49 (2000).

    Article  ADS  Google Scholar 

  9. Sikorski, Y., Said, A.A., Bado, P., Maynard, R., Florea, C., and Winick, K.A., Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses, Electron. Lett. 36, 226–227 (2000).

    Google Scholar 

  10. Watanabe, W., Toma, T., Yamada, K., Nishii, J., Hayashi, K., and Itoh, K., Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses, Opt. Lett. 25, 1669–1671 (2000).

    Article  ADS  Google Scholar 

  11. Chan, J.W., Huser, T., Risbud, S., and Krol, D.M., Structural changes in fused silica after exposure to femtosecond laser pulses, Opt. Lett. 26, 1726–1728 (2001).

    Article  ADS  Google Scholar 

  12. Minoshima, K., Kowalevicz, A.M., Hartl, I., Ippen, E.P., and Fujimoto, J.G., Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Opt. Lett. 26, 1516–1518 (2001).

    Article  ADS  Google Scholar 

  13. Schaffer, C.B., Brodeur, A., Garcia, J.F., and Mazur, E., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt. Lett. 26, 93–95 (2001).

    Article  ADS  Google Scholar 

  14. Streltsov, A.M. and Borrelli N.F., Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses, Opt. Lett. 26, 42–43 (2001).

    Article  ADS  Google Scholar 

  15. Cerullo, G., Osellame, R., Taccheo, S., Marangoni, M., Polli, D., Ramponi, R., Laporta, P., and De Silvestri, S., Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing, Opt. Lett. 27, 1938–1940 (2002).

    Article  ADS  Google Scholar 

  16. Minoshima, K., Kowalevicz, A.M., Ippen, E.P., and Fujimoto, J.G., Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing, Opt. Express. 10, 645–652 (2002).

    Article  ADS  Google Scholar 

  17. Osellame, R., Taccheo, S., Cerullo, G., Marangoni, M., Polli, D., Ramponi, R., Laporta, P., and De Silvestri, S., Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses, Electron. Lett. 38, 964–965 (2002).

    Google Scholar 

  18. Schaffer, C.B., Jamison, A.O., Garcia, J.F., and Mazur, E., Structural changes induced in transparent materials with ultrashort laser pulses, in Ultrafast lasers: Technology and applications, edited by M.E. Ferman, A. Galvanauskas, and G. Sucha, Marcel Dekker, New York (2002), pp. 395–417.

    Google Scholar 

  19. Streltsov, A.M. and Borrelli, N.F., Study of femtosecond-laser-written wave-guides in glasses, J. Opt. Soc. Am. B 19, 2496–2504 (2002).

    Article  ADS  Google Scholar 

  20. Will, M., Nolte, S., Chichkov, B.N., and Tünnermann, A., Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses, Appl. Opt. 41, 4360–4364 (2002).

    ADS  Google Scholar 

  21. Chan, J.W., Huser, T.R., Risbud, S.H., and Krol, D.M., Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses, Appl. Phys. A 76, 367–372 (2003).

    Google Scholar 

  22. Nolte, S., Will, M., Burghoff, J., and Tünnermann, A., Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics, Appl. Phys. A 77, 109–111 (2003).

    Google Scholar 

  23. Gorelik, T., Will, M., Nolte, S., Tünnermann, A., and Glatzel, U., Transmission electron microscopy studies of femtosecond laser induced modifications in quartz, Appl. Phys. A 76, 309–311 (2003).

    Google Scholar 

  24. Du, D., Liu, X., Korn, G., Squier, J., and Mourou, G., Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs, Appl. Phys. Lett. 64, 3071–3073 (1994).

    Google Scholar 

  25. Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., and Perry, M.D., Optical ablation by high-power short-pulse lasers, J. Opt. Soc. Am. B 13, 459–468 (1996).

    Article  ADS  Google Scholar 

  26. Lenzner, M., Krüger, J., Sartania, S., Cheng, Z., Spielmann, Ch., Mourou, G., Kautek, W., and Krausz, F., Femtosecond optical breakdown in dielectrics, Phys. Rev. Lett. 80, 4076–4079 (1998).

    Article  ADS  Google Scholar 

  27. Oberson, P., Gisin, B., Huttner, B., and Gisin, N., Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides, Appl. Opt. 37, 7268–7272 (1998).

    ADS  Google Scholar 

  28. Conzone, S.D., Hayden, J.S., Funk, D.S., Roshko, A., and Veasey, D.L., Hybrid glass substrates for waveguide device manufacture, Opt. Lett. 26, 509–511 (2001).

    Article  ADS  Google Scholar 

  29. Bansal, N.P. and Doremus, R.H., Handbook of Glass Properties, Academic Press, Orlando, FL (1986).

    Google Scholar 

  30. Harbsmeier, F. and Bolse, W., Ion beam induced amorphization in a quartz, J. Appl. Phys. 83, 4049–4054 (1998).

    Article  ADS  Google Scholar 

  31. Innerhofer, E., Südmeyer, T., Brunner, F., Häring, R., Aschwanden, A., Paschotta, R., Hönninger, C., Kumkar, M., and Keller, U., 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett. 28, 367–369 (2003).

    Article  ADS  Google Scholar 

  32. Limpert, J., Clausnitzer, T., Liem, A., Schreiber, T., Fuchs, H.-J., Zellmer, H., Kley, E.-B., and Tünnermann, A., High average power femtosecond fiber CPA system, Opt. Lett. 28, 1984–1986 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nolte, S., Will, M., Burghoff, J., Tünnermann, A. (2004). Fabrication of Optical Waveguides in Dielectrics by Femtosecond Laser Pulses. In: Jahns, J., Brenner, KH. (eds) Microoptics. Springer Series in Optical Sciences, vol 97. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34725-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34725-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1931-1

  • Online ISBN: 978-0-387-34725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics