Skip to main content

Planar-Integrated Free-Space Optics: From Components to Systems

  • Chapter
Microoptics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 97))

Abstract

Planar-integrated free-space optics (PIFSO) is an integration concept for classical free-space optics that was proposed in 1989 [1] and has since evolved into an open integration platform for micro-opto-electro-mechanical systems (MOEMS), sometimes also called optical MEMS. This chapter aims at providing an overview of this development that is characterized by a shift from component-related design and fabrication issues to system- and application-related ones. We will discuss the potential of PIFSO within the fast-growing field of microsystems engineering and compare it with that of alternative integration approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jahns, J. and Huang, A., Planar integration of free-space optical components, Appl. Opt. 28, 1602–1605 (1989).

    ADS  Google Scholar 

  2. Kilby, J. S., Invention of the integrated circuit, IEEE Trans. Electron. Devices ED-23, 648–654 (1976).

    Google Scholar 

  3. Moore, G. E., Cramming more components onto integrated circuits, Electronics 38, 114–117 (1965).

    Google Scholar 

  4. Sze, S. M., VLSI Technology, McGraw-Hill, New York (1987).

    Google Scholar 

  5. Moreau, W. M., Semiconductor Lithography - Principles, Practices, and Materials, Plenum Press, New York (1988).

    Google Scholar 

  6. Feynman, R. P., There’s plenty of room at the bottom, Engineering and Science, California Institute of Technology, Pasadena, CA (1960).

    Google Scholar 

  7. Madou, M., Fundamentals of Microfabrication, CRC Press, Boca Raton, FL (1997).

    Google Scholar 

  8. Nalwa, H. S. (ed.), Nanostructured Materials and Nanotechnology, Academic Press, San Diego, CA (2002).

    Google Scholar 

  9. Miller, S. E., Integrated optics: An introduction, Bell Systems Tech. J. 48, 20592068 (1969).

    Google Scholar 

  10. Vellekoop, A. R. and Smit, M. K., Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence, J. Lightwave Technol. 9, 310314 (1991).

    Google Scholar 

  11. Iga, K., Oikawa, M., Misawa, S., Banno, J., and Kokubun, Y., Stacked planar optics: An application of the planar microlens, Appl. Opt. 21, 3456–3460 (1982).

    ADS  Google Scholar 

  12. Heuberger, A., Mikromechanik: Mikrofertigung mit Methoden der Halbleitertechnologie, Springer-Verlag, Berlin (1991) (in German).

    Google Scholar 

  13. Wu, M. C., Micromachining for optical and optoelectronic systems, Proc. IEEE 85, 1833–1856 (1997).

    Article  Google Scholar 

  14. Sinzinger, S. and Jahns, J, Microoptics, Wiley-VCH, Weinheim (2003).

    Book  Google Scholar 

  15. Jahns, J., Planar packaging of free-space optical interconnections, Proc. IEEE 82, 1623–1631 (1994).

    Article  Google Scholar 

  16. Soda, H., Iga, K., Kitahara, C., and Suematsu, Y., GaInAsP/InP surface emitting injection lasers, Jpn. J. Appl. Phys. 18, 2329–2330 (1979).

    Article  ADS  Google Scholar 

  17. Wilmsen, C. W. et al. (eds.), Vertical-Cavity Surface-Emitting Lasers, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  18. Lau, J. H. (ed.), Flip Chip Technologies, McGraw-Hill, New York (1996).

    Google Scholar 

  19. Acklin, B. and Jahns, J., Packaging considerations for planar optical interconnection systems, Appl. Opt. 33, 1391–1397 (1994).

    ADS  Google Scholar 

  20. Gimkiewicz, C. and Jahns, J., Thermal management in planar optical systems with active components, Proc. SPIE 3226, 56–66 (1997).

    Article  ADS  Google Scholar 

  21. Gulden, K.-H., Eitel, S., Hunziker, S., Vez, D., Gimkiewicz, C., Gale, M., and Moser, M., High density VCSEL arrays, Proc. 2002 IEEE/LEOS Annual Meeting, Glasgow, Scotland, 2002, pp. 129–130.

    Google Scholar 

  22. Miller, D. A. B., Chemla, D. S., Damen, T. S., Wood, T. H., Burrus, C. A., Gossard, A. C., and Wiegmann, W., The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation, IEEE J. Quantum Electron. 21, 1462–1476 (1985).

    Article  ADS  Google Scholar 

  23. Goossen, K. W., Walker, J. A., D’Asaro, L. A., Tseng, B., Leibenguth, R., Kossives, D., Bacon, D. D., Dahringer, D., Chirovsky, L. M., Lentine, A. L., and Miller, D. A. B., GaAs MQW modulator integrated with silicon CMOS, IEEE Photon. Technol. Lett. 7, 360–362 (1995).

    Article  ADS  Google Scholar 

  24. Fey, D., Erhard, W., Gruber, M., Jahns, J., Bartelt, H., Grimm. G., Hoppe, L., and Sinzinger, S., Optical interconnects for neural and reconfigurable VLSI architectures, Proc. IEEE 88, 838–848 (2000).

    Article  Google Scholar 

  25. Wood, D. Optoelectronic Semiconductor Devices, Prentice-Hall, Englewood Cliffs, NJ (1994).

    Google Scholar 

  26. Kuznia, C. B., Flip chip bonded optoelectronic devices on ultra-thin silicon-onsapphire for parallel optical links, OSA Technical Digest on Optics in Computing 2001, Lake Tahoe, Nevada, 2001, pp. 134–136.

    Google Scholar 

  27. Kim, J., Papazian, A. R., Frahm, R. E., and Gates, J. V., Performance of large scale MEMS-based optical crossconnect switches, Proc. 2002 IEEE/LEOS Annual Meeting, Glasgow, Scotland, 2002, pp. 411–412.

    Google Scholar 

  28. Kuittinen, M., Turunen, J., and Vahimaa, P., Subwavelength-structured elements, in Diffractive Optics for Industrial and Commercial Applications, edited by Turunen, J., and Wyrowski, F., Akademie Verlag, Berlin (1997).

    Google Scholar 

  29. Herzig, 11.-P. (ed.), Micro-Optics, Taylor & Francis, New York (1997).

    Google Scholar 

  30. Metev, S. M. and Veiko, V. P., Laser Assisted Microtechnology, Springer-Verlag, Berlin (1998).

    Book  Google Scholar 

  31. Bähr, J. and Brenner, K.-H., Realization and optimization of planar refractive microlenses by Ag-Na ion exchange techniques, Appl. Opt. 35, 5102–5107 (1996).

    ADS  Google Scholar 

  32. Jahns, J. and Walker, S. J., Two-dimensional array of diffractive microlenses fabricated by thin film deposition, Appl. Opt. 29, 931–936, (1990).

    ADS  Google Scholar 

  33. Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  34. Gerchberg, R. W. and Saxton, O. W., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972).

    Google Scholar 

  35. Fienup, J. R., Phase retrieval algorithms: a comparison, Appl. Opt. 21, 27582769 (1982).

    Google Scholar 

  36. Turunen, J. and Wyrowski, F. (eds.), Diffractive Optics for Indstrial and Commercial Applications, Akademie Verlag, Berlin (1997).

    Google Scholar 

  37. Gruber, M., Diffractive optical elements as raster image generators, Appl. Opt. 40, 5830–5839 (2001).

    ADS  Google Scholar 

  38. Streibl, N., Beam shaping with optical array generators, J. Mod. Opt. 36, 15591573 (1989).

    Google Scholar 

  39. Mait, J. N., Understanding diffractive optic design in the scalar domain, J. Opt. Soc. Am. A 12, 2145–2158 (1995).

    Article  ADS  Google Scholar 

  40. Gruber, M., Optimal suppression of quantization noise with pseudoperiodic multilevel phase gratings, Appl. Opt. 41, 3392–3403 (2002).

    ADS  Google Scholar 

  41. Testorf, M. and Jahns, J, Paraxial theory of planar integrated systems, J. Opt. Soc. Am. A 14, 1569–1575 (1997).

    Google Scholar 

  42. Testorf, M. and Jahns, J., Imaging properties of planar-integrated micro-optics, J. Opt. Soc. Am. A 16, 1175–1183 (1999).

    Article  ADS  Google Scholar 

  43. Welford, W. T., Aberrations of the Symmetrical Optical System, Academic Press, London (1974).

    Google Scholar 

  44. Hecht, E., Optics, Addison-Wesley, San Francisco (2002).

    Google Scholar 

  45. Lohmann, A., Image formation of dilute arrays for optical information processing, Opt. Commun. 86, 365–370 (1991).

    Article  ADS  Google Scholar 

  46. Sinzinger, S. and Jahns, J, Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics, Appl. Opt. 36, 4729–4735 (1997).

    Article  ADS  Google Scholar 

  47. Lunitz, B. and Jahns, J., Tolerant design of a planar-optical clock distribution system, Opt. Commun. 134, 281–288 (1997).

    Article  ADS  Google Scholar 

  48. Gruber, M., ElJoudi, E., Sinzinger, S., and Jahns, J., Practical realization of massively parallel fiber-free-space optical interconnects, Appl. Opt. 40, 29022908 (2001).

    Google Scholar 

  49. Jahns, J. and Sinzinger, S., Microoptics for biomedical applications, Am. Biotechnol. Lab. 18, 52–54 (2000).

    Google Scholar 

  50. Birkl, G., Buchkremer, F., Dumke, R., and Ertmer, W., Atom optics with microfabricated optical elements, Opt. Commun. 191, 67–81 (2001).

    Article  ADS  Google Scholar 

  51. Eckert, W., Arrizon, V., Sinzinger, S., and Jahns, J, Compact planar-integrated optical correlator for spatially incoherent signals, Appl. Opt. 39, 759 - 765

    Article  ADS  Google Scholar 

  52. Dania, V., Glückstad, J., Morgensen, P. C., Eriksen, R. L. and Sinzinger, S. Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform, Opt. Lett. 27, 945–947 (2002).

    Google Scholar 

  53. Jahns, J, Gruber, M., Lunitz, B., and Stölzle, M., Optical interconnection and clocking using planar-integrated free-space optics, J. Opt. Soc. Korea 7, 1–6 (2003).

    Article  Google Scholar 

  54. Gruber, M., Sinzinger, S., and Jahns, J., Planar-integrated optical vector-matrix multiplier, Appl. Opt. 39, 5367–5373 (2000).

    ADS  Google Scholar 

  55. Gruber, M., Multi-chip module with planar-integrated free-space optical vectormatrix-type interconnects, Appl. Opt. 43, 463–470 (2004).

    ADS  Google Scholar 

  56. Gruber, M., Hagedorn, D., and Eckert, W., Precise and simple optical alignment method for double-sided lithography, Appl. Opt. 40, 5052–5055 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruber, M., Jahns, J. (2004). Planar-Integrated Free-Space Optics: From Components to Systems. In: Jahns, J., Brenner, KH. (eds) Microoptics. Springer Series in Optical Sciences, vol 97. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34725-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34725-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1931-1

  • Online ISBN: 978-0-387-34725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics