Skip to main content

Microstructure Technology for Optical Component Fabrication

  • Chapter
Microoptics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 97))

Abstract

Technologies and fabrication methods are often responsible for the success of products, because its price, functionality, size, and durability depend on it. Usually, technological reasons may lead to a time lag of years or even tens of years between the discovery and the first proof or the first commercial use of a physical effect. Therefore, the technologies play a key role in our technical life and we need to focus also on the fabrication technologies in a general discussion on microoptical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kley, E.-B., Fuchs, H.-J., and Zoellner, K., Fabrication technique for high aspect ratio gratings, Micromachining and microfabrication, Proc. SPIE 3879, 71–78 (1999).

    Article  ADS  Google Scholar 

  2. Clausnitzer, T., Fuchs, H.-J., Kley, E.-B., Tuennermann, A., and Zeitner, U. D., Polarizing metal stripe gratings for micro-optical polarimeter, Proc. SPIE 5183, 8–15 (2003).

    Article  ADS  Google Scholar 

  3. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Blasi, B., Heinzel, A., Sporn, D., Doll, W., and Wittwer, V., Subwavelength-structured antireflective surfaces on glass, Thin Solid Films 351, S. 73–78 (1999).

    Article  ADS  Google Scholar 

  4. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Blasi, B., Heinzel, A., Sporn, D., Doll, W., and Wittwer, V., Antireflective transparent covers for solar devices, Solar Energy 68(4) 357–360 (Pt. A) (2000).

    Google Scholar 

  5. Haidner, H., Kipfer, P., Stork, W., and Streibl, N., Zero-order gratings used as an artificial distributed index medium, Optik 89, 107–112 (1992).

    Google Scholar 

  6. Lalanne, Ph., Astilean, S., Chavel, P., Cambril, E., and Launois, H., Blazed-binary subwavelength gratings with efficiencies larger than those of conventional Echelette gratings, Opt. Lett. 23, 1081–1083 (1998).

    Article  ADS  Google Scholar 

  7. Lalanne, Ph., Astilean, S., Chavel, P., Cambril, E., and Launois, H., Design and fabrication of blazed-binary diffractive elements with sampling periods smaller than the structural cutoff, J. Opt. Soc. Am. A 16, 1143–1156 (1999).

    Article  ADS  Google Scholar 

  8. Raguin, D. H., and Morris, G. M., Antireflection structured surfaces for the infrared spectral region, Appl. Opt. 32 (7), 1154–1167 (1993).

    ADS  Google Scholar 

  9. Schnabel, B., and Kley, E.-B., Fabrication and application of subwavelength gratings, Proc. SPIE 3008, 233–241 (1997).

    Article  ADS  Google Scholar 

  10. Kley, E.-B., and Clausnitzer, T., E-beam lithography and optical near field lithography: new prospects in fabrication of various grating structures, Proc. SPIE 5184, 115–125 (2003).

    Article  ADS  Google Scholar 

  11. Ricks, D. W., Scattering from diffractive optics, in Diffractive and Miniaturized Optics, edited by Lee, S. H., Critical Reviews of Optical Science and Technology, SPIE Optical Engineering Press, Bellingham, WA, 87–211 (1993).

    Google Scholar 

  12. Daly, D., Stevens, R. F., Hutley, M. C., and Davies, N., The manufacture of microlenses by melting photoresist, J. Meas. Sci. Technol. 1 (Suppl.) 759–766 (1990).

    Article  ADS  Google Scholar 

  13. Jay, T. R., Stern, M. B., and Knowlden, R. E., Effect of microlens array fabrication parameters on optical quality, Proc. SPIE 1751, 236–245 (1992).

    Google Scholar 

  14. Nussbaum, Ph., Volkel, R., Herzig, H. P., and Dandliker, R., Microoptics for sensor applications, Proc. SPIE 2783, 1081–1083 (1995).

    Google Scholar 

  15. Popovic, Z. D., Sprague, R. A., and Connell, G. A. N., Technique for monolithic fabrication of microlens arrays, Appl. 27 (7), S. 1281–1284 (1988).

    Article  Google Scholar 

  16. Haselbeck, S., Schreiber, H., Schwider, J., and Streibl, N., Microlenses fabricated by melting photoresist on a base layer, Opt. Eng. 32 (6), 1322–1324 (1993).

    Article  ADS  Google Scholar 

  17. Erdmann, L. and Efferenn, D., Technique for monolithic fabrication of silicon microlenses with selectable rim angles, Opt. Eng. 36 (4), 1094–1098 (1997).

    Article  ADS  Google Scholar 

  18. Biehl, S., Danzebrink, R., Oliveira, P., and Aegerter, M.A., Refractive microlens fabrication by ink-jet process, J. Sol-Gel Sci. Technol. 13, 177–182 (1998).

    Article  Google Scholar 

  19. Cox, W. R., Chen, T., and Hayes, D.J., Micro-optics fabrication by ink-jet printing, Opt. Photonics News 12 (6), 32–35 June 2001.

    Article  ADS  Google Scholar 

  20. Kley, E.-B., Fuchs, H.-J., and Kilian, A., Fabrication of glass lenses by melting technology, Proc. SPIE 4440, 85–92 (2001).

    Article  ADS  Google Scholar 

  21. Wittig, L.-C., Clausnitzer, T., Kley, E.-B., and Tuennermann, A., Alternative method of gray-tone lithography with potential for the fabrication of combined continuous 3D surface profiles and subwavelength structures, Proc. SPIE 5183, 109–115 (2003).

    Article  ADS  Google Scholar 

  22. Oppliger, Y., Sixt, P., Stauffer, J. M., Mayor, J. M., Regnault, P., and Voirin, G., One-step 3D shaping using a gray-tone mask for optical and microelectronic applications, Microelectron. Eng. 23, 449–454 (1994).

    Google Scholar 

  23. Reimer, K., Engelke, R., Hofmann, U., Merz, P., Kohlmann-von Platen, K. T., and Wagner, B., Progress in gray tone lithography and replication techniques for different materials, Proc. SPIE 3879, 98–105.

    Google Scholar 

  24. Daeschner, W., Long, P., Larsson, M., and Lee, S., Fabrication of diffractive optical elements using a single optical exposure with a grey level mask, J. Vac. Sci. Technol. B 13 (6), 2729–2731 (1995).

    Article  Google Scholar 

  25. HEBS glass photomask blanks, Product information 96–01, Canyon Materials Incorporation, San Diego, CA.

    Google Scholar 

  26. Wu, C. Methods of making high energy beam sensitive glasses, U.S. Patent 5, 078,771 (7 January 1992 ).

    Google Scholar 

  27. Rogers, J. D., Lee, J., Karkkainen, A. H. O., Tkaczyk, T., and Descour, M. R., Gray-scale lithographic fabrication of optomechanical features using hybrid sol-gel glass for precision assembly of miniature imaging systems, Proc. SPIE 5177.

    Google Scholar 

  28. Wittig, L.-Chr., Cumme, M., Harzendorf, T., and Kley, E.-B., Intermittence effect in electron beam writing, Poster auf Micro-and Nano-Engineering 2000 18.-21.09.2000, Microelectron. Eng. 57–58, 321–326 (2001).

    Google Scholar 

  29. Gale, MT. and Knop, K., The fabrication of fine lens arrays by laser beam writing, Proc. SPIE 398, 347–353 (1983).

    Article  Google Scholar 

  30. Gale, M.T., Rossi, M., Pedersen, J., and Schutz, H., Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist, Opt. Eng. 33, 3556–3566 (1994).

    Article  ADS  Google Scholar 

  31. Gale, M.T., Direct writing of continuous-relief micro-optics, in Micro-optics: Elements, Systems and Applications, edited by H.P. Herzig, Taylor Francis, London (1997).

    Google Scholar 

  32. Goltsos, W. and Liu, S., Polar coordinate writer for binary optics fabrication, Proc. SPIE 1211, 137–147 (1990).

    Article  ADS  Google Scholar 

  33. Fujita, T., Nishihara, H., and Koyama, J., Blazed gratings and Fresnel lenses fabricated by electron-beam lithography, Opt. Lett. 7, 578–580 (1982).

    Article  ADS  Google Scholar 

  34. Kley, E.-B., Schnabel, B., and Zeitner, U. D., E-beam lithography: an efficient tool for the fabrication of diffractive and micro-optical elements, SPIE Proc. 3008, 222–232 (1997).

    Article  Google Scholar 

  35. Wittig, L.-C., and Kley, E.-B., Approximation of refractive micro-optical profiles by minimal surfaces, Proc. SPIE 3879, 222–232 (1999).

    Google Scholar 

  36. Traut, S., and Herzig, H. P., Holographically recorded gratings on microlenses for a miniaturized spectrometer array, Opt. Eng. 39 (1), 290–298 (2000).

    Article  ADS  Google Scholar 

  37. Traut, S., Rossi, M., and Herzig, H. P., Replicated arrays of hybrid elements for application in a low-cost micro spectrometer array, J. Mod. Opt. 47 (13), 2391–2397 (2000).

    ADS  Google Scholar 

  38. Kley, E.-B., Thoma, F., Zeitner, U.D., Wittig, L., and Aagedal, H., Fabrication of micro optical surface profiles by using gray scale masks, Proc. SPIE 3276, 254–262 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kley, EB., Wittig, LC., Tünnermann, A. (2004). Microstructure Technology for Optical Component Fabrication. In: Jahns, J., Brenner, KH. (eds) Microoptics. Springer Series in Optical Sciences, vol 97. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34725-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34725-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1931-1

  • Online ISBN: 978-0-387-34725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics