Skip to main content

Tungsten Oxide Nanorods: Synthesis, Characterization, and Application

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In recent years, transition metal oxide structures have garnered considerable attention due to their unique properties. Among the numerous transition metal oxides, tungsten oxides have been of special interest because of their distinctive characteristics that have led to a number of applications and promise further developments. Such applications include gas and humidity sensors, optical devices, electrochromatic windows, catalysts, and many more.1–6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J. J. Pireaux, and X. Correig, Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors, Sensors Actuators B 105(2), 271–277 (2005).

    Article  Google Scholar 

  2. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T Shigemori, and S. Takahashi, A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide, Sensors Actuators B 66(1–3), 142–145 (2000).

    Article  Google Scholar 

  3. C. Paracchini and G. Schianchi, Luminescence of WO3, Physica Status Solidi A—Appl. Res. 72(2), K129–K132 (1982).

    Article  CAS  Google Scholar 

  4. Y. He, Z. Wu, L. Fu, C. Li, Y. Miao, L. Cao, H. Fan, and B. Zou, Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol, Chem. Mater. 15, 4039–4045 (2003).

    Article  CAS  Google Scholar 

  5. M. A. Gondal, A. Hameed, and A. Suwaiyan, Photo-catalytic conversion of methane into methanol using visible laser, Appl. Catal. A 243(1), 165–174 (2003).

    Article  CAS  Google Scholar 

  6. C. Martín, G. Solana, V. Rives, G. Marcì, L. Palmisano, and A. Sclafani, Physico-chemical properties ofWO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium, Catal. Lett. 49, 235–243 (1997).

    Article  Google Scholar 

  7. A. Shengelaya, S. Reich, Y. Tsabba, and K. A. Müller, Electron spin resonance and magnetic susceptibility suggest superconductivity in Na doped WO3 samples, Eur. Phys. J. B 12(1), 13–15 (1999).

    Article  CAS  Google Scholar 

  8. L. Vayssieres, On the design of advanced metal oxide nanomaterials, Int. J. Nanotechnol. 1, 1–41 (2004).

    CAS  Google Scholar 

  9. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 15(5), 353–389 (2003).

    Article  CAS  Google Scholar 

  10. Y. Z. Jin, Y. Q. Zhu, R. L. D. Whitby, N. Yao, R. Ma, P. C. P. Watts, H. W. Kroto, and D. R. M. Walton, Simple approaches to quality large-scale tungsten oxide nanoneedles, J. Phys. Chem. B 108(40), 15572–15577 (2004).

    Article  CAS  Google Scholar 

  11. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, Mechanical behavior of individual WS2 nanotubes, J. Mater. Res. 19(2), 454–459 (2003).

    Article  Google Scholar 

  12. X. W. Lou and H. C. Zeng, An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution, Inorganic Chem. 42(20), 6169–6171 (2003).

    Article  CAS  Google Scholar 

  13. G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, Tungsten oxide nanowires on tungsten substrates, Nano Lett. 2(8), 849–851 (2002).

    Article  CAS  Google Scholar 

  14. E. Lassner and W.-D. Schubert, Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, Norwich, NY, 2004) pp. 133–177.

    Google Scholar 

  15. E. Lassner and W.-D. Schubert, Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, Norwich, NY, 2004), pp. 85–109.

    Google Scholar 

  16. Y. Shingaya, T. Nakayama, and M. Aono, Epitaxial growth of WOx nanorod array on W(001), Sci. Technol. Adv. Mater. 5(4–5), 647–649 (2004).

    Article  CAS  Google Scholar 

  17. Y. Q. Zhu, W. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, Tungsten oxide tree-like structures, Chem. Phys. Lett. 309(5–6), 327 (1999).

    Article  CAS  Google Scholar 

  18. D. Z. Guo, K. Yu-Zhang, A. Gloter, G. M. Zhang, and Z. Q. Xue, Synthesis and characterization of tungsten oxide nanorods, J. Mater. Res. 19(12), 3665–3670 (2004).

    Article  CAS  Google Scholar 

  19. Z. Liu, Y. Bando and C. Tang, Synthesis of tungsten oxide nanowires, Chem. Phys. Lett. 372(1–2), 179 (2003).

    Article  CAS  Google Scholar 

  20. A. Rothschild, J. Sloan, and R. Tenne, Growth of WS2 nanotubes phases, J. Am. Chem. Soc. 122(21), 5169–5179 (2000).

    Article  CAS  Google Scholar 

  21. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404(6773), 59–61 (2000).

    Article  CAS  Google Scholar 

  22. N. R. Jana, L. Gearheart, and C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun. 7, 617–618 (2001).

    Article  Google Scholar 

  23. Y. Koltypin, S. I. Nikitenko, and A. Gedanken, The sonochemical preparation of tungsten oxide nanoparticles, J. Mater. Chem. 12, 1107–1110 (2002).

    Article  CAS  Google Scholar 

  24. K. Lee, W. S. Seo, and J. T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods, J. Am. Chem. Soc. 125, 3408–3409 (2003).

    Article  CAS  Google Scholar 

  25. T. S. Yoon, J. Oh, S. H. Park, V. Kim, B. G. Jung, S. H. Min, J. Park, T. Hyeon, and K. B. Kim, Single and multiple-step dip-coating of colloidal maghemite (g-Fe2O3) nanoparticles onto Si, Si3N4, and SiO2 substrates, Adv. Funct. Mater. 14(11), 1062–1068 (2004).

    Article  CAS  Google Scholar 

  26. F. Dumestre, B. Chaudret, C. Amiens, M. Fromen, M. Casanove, P. Renaud, and P. Zurcher, Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry, Angew. Chem. Int. Ed. 41(22), 4286–4289 (2002).

    Article  CAS  Google Scholar 

  27. S. M. Lee, Y. W. Jun, S. Cho, and J. Cheon, Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks, J. Am. Chem. Soc. 124(38), 11244–11245 (2002).

    Article  CAS  Google Scholar 

  28. V. K. Sarin, Morphological changes occurring during the reduction of WO3, J. Mater. Sci. 10(4), 593–598 (1975).

    Article  CAS  Google Scholar 

  29. G. L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, and R. Tenne, Investigations of nonstoichiometric tungsten oxide nanoparticles, J. Solid State Chem. 162(2), 300 (2001).

    Article  CAS  Google Scholar 

  30. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, Mechanical behavior of individual WS2 nanotubes, J. Mater. Res. 19(2), 454–459 (2004).

    Article  CAS  Google Scholar 

  31. J. Prywer, Correlation between growth of high-index faces, relative growth rates and crystallographic structure of crystal, Eur. Phys. J. B 25, 61–68 (2002).

    CAS  Google Scholar 

  32. G. F. Strauss, The Basics of Quantum Dots. (2002) [Available from: http://www.chem.ucsb.edu_strouse_group/learning.html.

    Google Scholar 

  33. M. Gillet, C. Lemire, E. Gillet and K. Aguir, The role of surface oxygen vacancies upon WO3 conductivity, Surf. Sci. 532–535, 519–525 (2003).

    Article  Google Scholar 

  34. T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, Photochromism of WO3 colloids combined with TiO2 nanoparticles, J. Phys. Chem. B 106, 12670–12676 (2002).

    Article  CAS  Google Scholar 

  35. X. L. Li, T. J. Lou, X. M. Sun, and Y. D. Li, Highly sensitive WO3 hollow-sphere gas sensors, Inorganic Chem. 43, 5442–5449 (2004).

    Article  CAS  Google Scholar 

  36. K. Galatsis, Y. X. Li, W. Wlodarski, E. Comini, G. Sberveglieri, C. Cantalini, S. Santucci, and M. Passacantando, Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors, Sensors Actuators B 83(1–3), 276–280 (2002).

    Article  Google Scholar 

  37. Y. G. Choi, G. Sakai, K. Shimanoe, Y. Teraoka, N. Miura, and N. Yamazoe, Preparation of size and habit-controlled nano crystallites of tungsten oxide, Sensors Actuators B 93(1–3), 486–494 (2003).

    Article  Google Scholar 

  38. U.S. Environmental Protection Agency, National Ambient Air Quality Standards. (2005).

    Google Scholar 

  39. M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 41(13), 2405–2408 (2002).

    Article  CAS  Google Scholar 

  40. P. Gröning, P. Ruffieux, L. Schlapbach, and O. Gröning, Carbon nanotubes for cold electron sources, Adv. Eng. Mater. 5(8), 541–550 (2003).

    Article  Google Scholar 

  41. J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, Tuning the field-emission properties of tungsten oxide nanorods, Small 1(3), 310–313 (2005).

    Article  CAS  Google Scholar 

  42. Y. Li, Y. Bando, and D. Golberg, Quasi-aligned single-crystalline W18O49 nanotubes and nanowires, Adv. Mater. 15(15), 1294–1296 (2003).

    Article  CAS  Google Scholar 

  43. H. Kohler and W. Gopel, Catalysis of the oxygen reduction on W18O49 electrodes by OH induced surface-states—A study based on XPS UPS and electromotive-force measurements, J. Electrochem. Soc. 139(11), 3035–3042 (1992).

    Article  CAS  Google Scholar 

  44. T. Lindgren, Photo Induced Oxidation of Water at Thin Film Electrodes: A study of Tungsten Oxide, Hematite, Indium Nitride and Tin Nitride, in Department of Physical Chemistry. 2001, Uppsala University. p. 80.

    Google Scholar 

  45. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Diluted II-VI oxide semiconductors with multiple band gaps, Phys. Rev. Lett. 91(24), Art. no. 246403 (2003).

    Google Scholar 

  46. United States Geological Survey, Minerals Information: Commodity Statistics and Information (2004) [Available from: http://minerals.usgs.gov/minerals/pubs/commodity/.

    Google Scholar 

  47. S. Sakthivel, S. U. Geissen, D. W. Bahnemann, V. Murugesan, and A. Vogelpohl, Enhancement of photocatalytic activity by semiconductor heterojunctions:a-Fe2O3, WO3 and CdS deposited on ZnO, J. Photochem. Photobiol. A 148, 283–293 (2002).

    Article  CAS  Google Scholar 

  48. E. Torres-García, G. Canizal, S. Velumani, L. F. Ramírez-Verduzco, F. Murrieta-Guevara, J. A. Ascencio, and E. Torres-Garcia, Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts, Appl. Phys. A—Mater. Sci. Process. 79(8), 2037–2040 (2004)

    Google Scholar 

  49. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO 3/I shuttle redox mediator under visible light irradiation, Chem. Commun. 23, 2416–2417 (2001).

    Article  Google Scholar 

  50. Y. C. Lee, Y. P. Hong, H. Y. Lee, H. Kim, Y. J. Jung, K. H. Ko, H. S. Jung, and K. S. Hong, Photocatalysis and hydrophilicity of doped TiO2 thin films, J. Colloid Interface Sci. 267, 127–131 (2003).

    Article  CAS  Google Scholar 

  51. C. Saltiel, Q. Chen, S. Manickavasagam, L. S. Schadler, R. W. Siegel, and M. P. Menguc, Identification of the dispersion behavior of surface treated nanoscale powders, J. Nanopart. Res. 6, 35–46 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Williamson, E.H., Yao, N. (2007). Tungsten Oxide Nanorods: Synthesis, Characterization, and Application. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_8

Download citation

Publish with us

Policies and ethics