Skip to main content

Gold Catalysts Supported on Nanostructured Materials: Support Effects

  • Chapter
Nanotechnology in Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Although gold in bulk has often been regarded as poorly active as a catalyst, Haruta et al. found in the late 1980s and the early of 1990s that the gold particles deposited on selected metal oxides exhibit surprisingly high catalytic activity for CO oxidation at low temperature.1,2 Now, an extensive body of literature describing the CO oxidation ability of gold nanoparticles supported on various metal oxides, such as TiO2,3–15 Fe2O3,1,16 CO3O4,1 NiO,1 SiO2,17 ZrO2,18,19 and Al2O3,20 has appeared.21–30 The catalytic activities of gold catalysts depend on many factors. Among them, the variation in the properties of support oxides gives rise to much of the variability in supported gold catalysts, for example the effect of isoelectronic point (IEP) upon deposition of gold species or the role of the oxide reducibility in effecting the transfer of oxygen between the support and the gold nanoparticles. The focus of this chapter is the review of our recent research on the synthesis and characterization of tailored nanostructured supports for the assembly of ultrasmall gold nanoparticles for catalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide, J. Catal. 115(2), 301–309 (1989).

    Article  CAS  Google Scholar 

  2. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, Low-temperature oxidation of Co over gold supported on TiO2, alpha-Fe2O3, and Co3O4, J. Catal. 144(1), 175–192 (1993).

    Article  CAS  Google Scholar 

  3. S. D. Lin, M. Bollinger, and M. A. Vannice, Low-temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts, Catal. Lett. 17(3–4), 245–262 (1993).

    Article  CAS  Google Scholar 

  4. W. F. Yan, B. Chen, S. M. Mahurin, S. Dai, and S. H. Overbury, Brookite-supported highly stable gold catalytic system for CO oxidation, Chem. Commun. 1918–1919 (2004).

    Google Scholar 

  5. Y. Z. Yuan, A. P. Kozlova, K. Asakura, H. L. Wan, K. Tsai, and Y. Iwasawa, Supported Au catalysts prepared from Au phosphine complexes and As-precipitated metal hydroxides: Characterization and low-temperature CO oxidation, J. Catal. 170(1), 191–199 (1997).

    Article  CAS  Google Scholar 

  6. J. D. Grunwaldt, C. Kiener, C. Wogerbauer, and A. Baiker, Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids, J. Catal. 181(2), 223–232 (1999).

    Article  CAS  Google Scholar 

  7. G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation, Catal. Lett. 44(1–2), 83–87 (1997).

    Article  CAS  Google Scholar 

  8. M. Okumura, K. Tanaka, A. Ueda, and M. Haruta, The reactivities of dimethylgold(III)beta-diketone on the surface of TiO2—A novel preparation method for Au catalysts, Solid State Ionics 95(1–2), 143–149 (1997).

    Article  CAS  Google Scholar 

  9. M. A. P. Dekkers, M. J. Lippits, and B. E. Nieuwenhuys, CO adsorption and oxidation on Au/TiO2, Catal. Lett. 56(4), 195–197 (1998).

    Article  CAS  Google Scholar 

  10. M. Valden, S. Pak, X. Lai, and D. W. Goodman, Structure sensitivity of CO oxidation over model Au/TiO2 catalysts, Catal. Lett. 56(1), 7–10 (1998).

    Article  CAS  Google Scholar 

  11. M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281(5383), 1647–1650 (1998).

    Article  CAS  Google Scholar 

  12. J. D. Grunwaldt, and A. Baiker, Gold/titania interfaces and their role in carbon monoxide oxidation, J. Phys. Chem. B 103(6), 1002–1012 (1999).

    Article  CAS  Google Scholar 

  13. G. Mul, A. Zwijnenburg, B. van der Linden, M. Makkee, and J. A. Moulijn, Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR study, J. Catal. 201(1), 128–137 (2001).

    Article  CAS  Google Scholar 

  14. M. Date, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, and A. Haruta, Performance of Au/TiO2 catalyst under ambient conditions, Catal. Today 72(1–2), 89–94 (2002).

    Article  CAS  Google Scholar 

  15. W. F. Yan, B. Chen, S. M. Mahurin, E. W. Hagaman, S. Dai, and S. H. Overbury, Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles, J. Phys. Chem. B 108(9), 2793–2796 (2004).

    Article  CAS  Google Scholar 

  16. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, and T. Tabakova, FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts, J. Catal. 188(1), 176–185 (1999).

    Article  CAS  Google Scholar 

  17. S. H. Overbury, L. Ortiz-Soto, H. G. Zhu, B. Lee, M. D. Amiridis, and S. Dai, Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions, Catal. Lett. 95(3–4), 99–106 (2004).

    Article  CAS  Google Scholar 

  18. A. Knell, P. Barnickel, A. Baiker, and A. Wokaun, Co Oxidation over Au/ZrO2 catalysts—Activity, deactivation behavior, and reaction-mechanism, J. Catal. 137(2), 306–321 (1992).

    Article  CAS  Google Scholar 

  19. J. D. Grunwaldt, M. Maciejewski, O. S. Becker, P. Fabrizioli, and A. Baiker, Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation, J. Catal. 186(2), 458–469 (1999).

    Article  CAS  Google Scholar 

  20. G. K. Bethke, and H. H. Kung, Selective CO oxidation in a hydrogen-rich stream over Au/gamma-Al2O3 catalysts, Appl. Catal. A-Gen. 194 43–53 (2000).

    Article  Google Scholar 

  21. G. C. Bond, and D. T. Thompson, Catalysis by gold, Catal. Rev.-Sci. Eng. 41(3–4), 319–388 (1999).

    Article  CAS  Google Scholar 

  22. G. C. Bond, and D. T. Thompson, Gold-catalysed oxidation of carbon monoxide, Gold Bull. 33(2), 41–51 (2000).

    CAS  Google Scholar 

  23. A. Wolf, and F. Schuth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal. A-Gen. 226(1–2), 1–13 (2002).

    Article  CAS  Google Scholar 

  24. M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36(1), 153–166 (1997).

    Article  CAS  Google Scholar 

  25. S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, and P. Claus, Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today 72(1–2), 63–78 (2002).

    Article  CAS  Google Scholar 

  26. A. Zwijnenburg, M. Saleh, M. Makkee, and J. A. Moulijn, Direct gas-phase epoxidation of propene over bimetallic Au catalysts, Catal. Today 72(1–2), 59–62 (2002).

    Article  CAS  Google Scholar 

  27. M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, Cattech 6(3), 102–115 (2002).

    Article  CAS  Google Scholar 

  28. T. V. Choudhary, and D. W. Goodman, Oxidation catalysis by supported gold nano-clusters, Top. Catal. 21(1–3), 25–34 (2002).

    Article  CAS  Google Scholar 

  29. G. Schmid, and B. Corain, Nanoparticulated gold: syntheses, structures, electronics, and reactivities, Eur. J. Inorg. Chem. (17), 3081–3098 (2003).

    Article  CAS  Google Scholar 

  30. M. C. Daniel, and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104(1), 293–346 (2004).

    Article  CAS  Google Scholar 

  31. W. F. Yan, and S. Dai, Primary- and secondary-support contributions to the activities of Au nanoparticles, to be submitted.

    Google Scholar 

  32. W. P. Huang, X. H. Tang, Y. Q. Wang, Y. Koltypin, and A. Gedanken, Selective synthesis of anatase and rutile via ultrasound irradiation, Chem. Commun. (15), 1415–1416 (2000).

    Article  Google Scholar 

  33. Y. Q. Zheng, S. Erwei, S. X. Cui, W. J. Li, and X. F. Hu, Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites, J. Mater. Sci. Lett. 19(16), 1445–1448 (2000).

    Article  Google Scholar 

  34. S.-J. Lee, and A. Gavrilidis, Supported Au catalysts for low-temperature CO oxidation prepared by impregnation, J. Catal. 206, 305–313 (2002).

    Article  CAS  Google Scholar 

  35. D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 120(24), 6024–6036 (1998).

    Article  CAS  Google Scholar 

  36. I. Ichinose, H. Senzu, and T. Kunitake, Stepwise adsorption of metal alkoxides on hydrolyzed surfaces: A surface sol-gel process, Chem. Lett. (10), 831–832 (1996).

    Article  Google Scholar 

  37. G. Riegel, and J. R. Bolton, Photocatalytic efficiency variability in TiO2 particles, J. Phys. Chem. 99(12), 4215–4224 (1995).

    Article  CAS  Google Scholar 

  38. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, and M. Gratzel, Sustained water cleavage by visible-light, J. Am. Chem. Soc. 103(21), 6324–6329 (1981).

    Article  CAS  Google Scholar 

  39. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B 107(19), 4545–4549 (2003).

    Article  CAS  Google Scholar 

  40. M. Haruta, B. S. Uphade, S. Tsubota, and A. Miyamoto, Selective oxidation of propylene over gold deposited on titanium-based oxides, Res. Chem. Intermed. 24(3), 329–336 (1998).

    Article  CAS  Google Scholar 

  41. K. Fukushima, G. H. Takaoka, J. Matsuo, and I. Yamada, Effects on CO oxidation activity of nano-scale Au islands and TiO2 support prepared by the ionized cluster beam method, Japan. J. Appl. Phys. Part 1—Regul. Pap. Short Notes Rev. Pap. 36(2), 813–818 (1997).

    CAS  Google Scholar 

  42. Y. Iizuka, T. Tode, T. Takao, K. Yatsu, T. Takeuchi, S. Tsubota, and M. Haruta, A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide, J. Catal. 187(1), 50–58 (1999).

    Article  CAS  Google Scholar 

  43. G. V. Samonsov, The Oxide Handbook, (IFI/Plenum, New York, 1982).

    Google Scholar 

  44. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48(5–8), 53–230 (2003).

    Article  CAS  Google Scholar 

  45. V. Schwartz, D. R. Mullins, W. F. Yan, B. Chen, S. Dai, and S. H. Overbury, XAS study of Au supported on TiO2: influence of oxidation state and particle size on catalytic activity, J. Phys. Chem. B 108(40), 15782–15790 (2004).

    Article  CAS  Google Scholar 

  46. C. T. Campbell, Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties, Surf. Sci. Rep. 27(1–3), 1–111 (1997).

    Article  CAS  Google Scholar 

  47. I. Ichinose, H. Senzu, and T. Kunitake, A surface sol-gel process of TiO2 and other metal oxide films with molecular precision, Chem. Mater. 9(6), 1296–1298 (1997).

    Article  CAS  Google Scholar 

  48. J. G. Huang, and T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc. 125(39), 11834–11835 (2003).

    Article  CAS  Google Scholar 

  49. J. H. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, and N. Toshima, Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: Nanoparticle morphology and catalytic activity, J. Am. Chem. Soc. 125(36), 11034–11040 (2003).

    Article  CAS  Google Scholar 

  50. M. Leskela, and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges, Angew. Chem. Int. Ed. 42(45), 5548–5554 (2003).

    Article  CAS  Google Scholar 

  51. T. Yasuda, R. Kuse, K. Iwamoto, K. Tominaga, and J. W. Park, Vapor-liquid hybrid deposition process for device-quality metal oxide film growth, Chem. Mater. 15(22), 4157–4159 (2003).

    Article  CAS  Google Scholar 

  52. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem. Mater. 15(18), 3507–3517 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yan, W., Overbury, S.H., Dai, S. (2007). Gold Catalysts Supported on Nanostructured Materials: Support Effects. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_5

Download citation

Publish with us

Policies and ethics