Skip to main content

Catalysis by Gold: Recent Advances in Oxidation Reactions

  • Chapter
Nanotechnology in Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The discovery in the 1980s that finely supported divided nanoparticles of gold could act as catalysts for reactions at lowtemperatures has to be one of the most fascinating recent observations in chemistry, since most consider gold to be an unreactive metal. Gold for a long time had been considered to be a relatively inert material and particularly unpromising as a catalyst. In particular, due to its stability under most conditions it is really surprising that it can be a highly effective oxidation catalyst. Consequently, a large number of experimental and theoretical studies are being undertaken to try to elucidate the nature of this interesting catalytic activity. This recent research has been reviewed by Haruta,1–5 Bond and Thompson,6,7 Bond,8 Thompson,9 Freund and coworkers,10 Cortie,11 Hashmi,12 Hutchings13–15 and Hutchings and Scurrell.16 It should be noted that copper and silver (both in the same triad of the periodic table as gold) are used in many large scale catalytic processes, and it has been known for many years that the preparation of active catalysts with copper and silver requires the metal to be well dispersed on a support. Hence, there should not be so much surprise when the same is observed for gold, but because gold was considered to be inert few experimental studies explored this area until the seminal studies of Haruta17 who discovered the high activity of gold for CO oxidation at sub-ambient temperature. This new discovery brings with it the opportunity that gold, in an appropriate form, is perhaps the most interesting metal in the Periodic Table with respect to table its potential to act as a catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36(1), 153–166 (1997).

    Article  CAS  Google Scholar 

  2. M. Haruta, and M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A 222(1–2), 427–437 (2001).

    CAS  Google Scholar 

  3. M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH 6(3), 102–115 (2002).

    Article  CAS  Google Scholar 

  4. M. Haruta, When gold is not noble: Catalysis by nanoparticles, Chem. Rec. 3(2), 75–87 (2003).

    Article  CAS  Google Scholar 

  5. M. Haruta, Gold as a catalyst in the 21st century: Preparation, working mechanism and applications, Gold Bull. 37(1–2), 27–36 (2004).

    CAS  Google Scholar 

  6. G. C. Bond, and D. T. Thompson, Catalysis by gold, Catal. Rev. Sci. Eng. 41(3–4), 319–388 (1999).

    Article  CAS  Google Scholar 

  7. G. C. Bond, and D. T. Thompson, Gold-catalysed oxidation of carbon monoxide, Gold Bull. 33(2), 41–51 (2000).

    CAS  Google Scholar 

  8. D. T. Thompson, Perspective on industrial and scientific aspects of gold catalysis, Appl. Catal. A 243(2), 201–205 (2003).

    Article  CAS  Google Scholar 

  9. R. Meyer, C. Lemaire, Sh. K. Shaikutdinov, and H.-J. Freund, Surface chemistry of catalysis by gold, Gold Bull. 37(1–2), 72–124 (2004).

    CAS  Google Scholar 

  10. M. B. Cortie, The weird world of nanoscale gold, Gold Bull. 37(1–2), 12–19 (2004).

    CAS  Google Scholar 

  11. A. S. K. Hashmi, Homogeneous catalysis by gold, Gold Bull. 37(1–2), 51–65 (2004).

    CAS  Google Scholar 

  12. G. J. Hutchings, Catalysis: A golden future, Gold Bull. 29(4), 123–130 (1996).

    CAS  Google Scholar 

  13. G. J. Hutchings, New directions in gold catalysis, Gold Bull. 37(1–2), 3–11 (2004).

    CAS  Google Scholar 

  14. G. J. Hutchings, Catalysis by gold, Catal. Today 100, 55–61 (2005).

    Article  CAS  Google Scholar 

  15. G. J. Hutchings, and M. S. Scurrell, Designing oxidation catalysts: Are we getting better?, CATTECH 7(3), 90–103 (2003).

    Article  CAS  Google Scholar 

  16. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C, Chem. Lett. 2, 405–408 (1987).

    Article  Google Scholar 

  17. P. A. Sermon, G. C. Bond, and P. B. Wells, Hydrogenation of alkenes over supported gold, J. Chem. Soc., Faraday Trans. 1 75(2), 385–394 (1979).

    Article  CAS  Google Scholar 

  18. J. E. Bailie, and G. J. Hutchings, Promotion by sulfur of gold catalysts for crotyl alcohol formation from crytonaldehyde hydrogenation, Chem. Commun. 21, 2151–2152 (1999).

    Article  Google Scholar 

  19. G. J. Hutchings, Vapour phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts, J. Catal. 96(1), 292–295 (1985).

    Article  CAS  Google Scholar 

  20. K. Shinoda, Vapour-phase hydrochlorination of acetylene over metal chlorides supported on activated carbon, Chem. Lett. 3, 219–220 (1975).

    Article  Google Scholar 

  21. B. Nkosi, N. J. Coville, and G. J. Hutchings, Vapour-phase hydrochlorination of acetylene with group VIII and 1B metal chloride catalysts, Appl. Catal. 43(1), 33–39 (1988).

    Article  CAS  Google Scholar 

  22. B. Nkosi, N. J. Coville, G. J. Hutchings, M. D. Adams, J. Friedl, and F. Wagner, Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation, J. Catal. 128(2), 378–386 (1991).

    Article  CAS  Google Scholar 

  23. B. Nkosi, M. D. Adams, N. J. Coville, and G. J. Hutchings, Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst deactivation, J. Catal. 128(2), 366–377 (1991).

    Article  CAS  Google Scholar 

  24. M. Haruta, N. Yamada, T. Kobayashi, and S. Lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115(2), 301–309 (1989).

    Article  CAS  Google Scholar 

  25. A. K. Sinha, S. Seelan, S. Tsubota, and M. Haruta, A three-dimensional mesoporous titanosilicate support for gold nanoparticles: Vapour-phase epoxidation of propene with high conversion, Angew. Chem. Int. Ed. 43(12), 1546–1548 (2004).

    Article  CAS  Google Scholar 

  26. H. H. Kung, M. C. Kung, and C. K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal. 216(1–2), 425–432 (2003).

    Article  CAS  Google Scholar 

  27. M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281(5383), 1647–1650 (1998).

    Article  CAS  Google Scholar 

  28. H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, G. Dietrich, P. Ziemann, J. P. Spatz, S. Rietmüller, T. Hartmann, M. Nöller, G. Smid, M. Garnier, and P. Oelhafen, Oxidation-resistant gold-55 clusters, Science 297(5586), 1533–1536 (2002).

    Article  CAS  Google Scholar 

  29. N. Lopez, and J. K. Nørskov, Catalytic CO oxidation by a gold nanoparticle: A density functional study, J. Am. Chem. Soc. 124(38), 11262–11263 (2002).

    Article  CAS  Google Scholar 

  30. R. J. Davis, All that glitters is not Au0, Science 301(5635), 926–927 (2003).

    Article  CAS  Google Scholar 

  31. N. A. Hodge, C. J. Kiely, R. Whyman, M. R. H. Siddiqui, G. J. Hutchings, Q. A. Pankhurst, F. E. Wagner, R. R. Rajaram, and S. E. Golunski, Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low temperature CO oxidation, Catal. Today 72(1–2), 133–144 (2002).

    Article  CAS  Google Scholar 

  32. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts, Science 301(5635), 935–938 (2003).

    Article  CAS  Google Scholar 

  33. M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3, J. Catal. 171(1), 93–105 (1997).

    Article  CAS  Google Scholar 

  34. S. özkara, and A. E. Aksoylu, Selective low temperature carbon monoxide oxidation in H2-rich gas streams over activated carbon supported catalysts, Appl. Catal. 251(1), 75–83 (2003).

    Article  CAS  Google Scholar 

  35. P. V. Snytnikov, V. A. Sobyanin, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, and D. A. Shlyapin, Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru-, Pd-supported catalysts, Appl. Catal. 239(1–2), 149–156 (2003).

    CAS  Google Scholar 

  36. R. M. Torres Sanchez, A. Ueda, K. Tanaka and M. Haruta, Selective oxidation of CO in hydrogen over gold supported on manganese oxides, J. Catal. 168, 125–127 (1997).

    Article  Google Scholar 

  37. M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2, Catal. Lett. 51(1–2), 53–58 (1998).

    Article  CAS  Google Scholar 

  38. M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, Kinetics of the selective low-temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3, J. Catal. 182(2), 430–440 (1999).

    Article  CAS  Google Scholar 

  39. B. Qiao, and Y. Deng, Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2, Chem. Commun. 17, 2192–2193 (2003).

    Article  CAS  Google Scholar 

  40. B. Grigorova, J. Mellor, A. Palazov, and F. Greyling, Selective catalytic oxidation of CO in presence of H2, PCT Int. WO 2000059631 (2000).

    Google Scholar 

  41. S. Carrettin, P. Concepción, A. Corma, J. López-Nieto, and V. F. Puntes, Gold catalysts: Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude, Angew. Chem. Int. Ed. 43(19), 2538–2540 (2004).

    Article  CAS  Google Scholar 

  42. M. M. Schubert, A. Venugopal, M. J. Kahlich, V. Plzak, and R. J. Behm, Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3, J. Catal. 222(1), 32–40 (2004).

    Article  CAS  Google Scholar 

  43. L. Prati and M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols, J. Catal. 176(2), 552–560 (1998).

    Article  CAS  Google Scholar 

  44. F. Porta, L. Prati, M. Rossi, S. Colluccia, and G. Marta, Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation, Catal. Today 61(1–4), 165–172 (2000).

    Article  CAS  Google Scholar 

  45. C. Bianchi, F. Porta, L. Prati, and M. Rossi, Selective liquid phase oxidation using gold catalysts, Top. Catal. 13(3), 231–236 (2000).

    Article  CAS  Google Scholar 

  46. L. Prati, and G. Marta, New gold catalysts for liquid phase oxidation, Gold Bull. 32(3), 96–101 (1999).

    CAS  Google Scholar 

  47. S. Carrettin, P. McMorn, P. Johnston, K. Griffin, and G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun. 7, 696–697 (2002).

    Article  CAS  Google Scholar 

  48. S. Carretin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, and G. J. Hutchings, Oxidation of glycerol using supported Pt, Pd and Au catalysts, Phys. Chem. Chem. Phys. 5(6), 1329–1336 (2003).

    Article  CAS  Google Scholar 

  49. M. Besson, and P. Gallezot, Selective oxidation of alcohols and aldehydes on metal catalysts, Catal. Today 57(1–2), 127–141 (2000).

    Article  CAS  Google Scholar 

  50. R. A. Sheldon, Redox molecular sieves as heterogeneous catalysts for liquid phase oxidations, Stud. Surf. Sci. Catal. 110, 151–175 (1997).

    Article  CAS  Google Scholar 

  51. G. Jenzer, T. Mallet, M. Maciejewski, F. Eigenmann, and A. Baiker, Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst, Appl. Catal. A 208(1–2), 125–133 (2001).

    CAS  Google Scholar 

  52. H. T. Hess, in Kirk-Othmer Encyclopedia of Chemical Engineering, Edited by Kroschwitz and M. Howe-Grant (Wiley, New York, 1995)m vol. 13, p. 961.

    Google Scholar 

  53. J. Van Weynbergh, J.-P. Schoebrichts, and J.- C. Colery, Direct synthesis of hydrogen peroxide by heterogeneous catalysis, catalyst for the said synthesis and method of preparation of the said catalyst, US Pat. 5447706 (1995).

    Google Scholar 

  54. B. Zhou, and L.- K. Lee, Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2), US Pat. 69168775 (2001).

    Google Scholar 

  55. J. Wanngard, Method for manufacture of hydrogen peroxide, Eur. Pat. 816286 (1998)

    Google Scholar 

  56. K. T. Chuang, and B. Zhou, Production of hydrogen peroxide, US Pat. 5338531 (1994).

    Google Scholar 

  57. T. Hayashi, K. Tanaka, and M. Haruta, Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen, J. Catal. 178(2), 566–575 (1998).

    Article  CAS  Google Scholar 

  58. P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, and G. J. Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst, Chem. Commun. 18, 2058–2059 (2002).

    Article  CAS  Google Scholar 

  59. P. Landon, P. J. Collier, A. F. Carley, D. Chadwick, A. J. Papworth, A Burrows, C. J. Kiely, and G. J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts, Phys. Chem. Chem. Phys. 5(9), 1917–1923 (2003).

    Article  CAS  Google Scholar 

  60. G. J. Hutchings, I. H. Stewart, and E. G. Derouane, Catalytic reactions at supercritical conditions, Curr. Top. Catal. 2, 17–38 (1999).

    Google Scholar 

  61. G. J. Hutchings, unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hutchings, G.J. (2007). Catalysis by Gold: Recent Advances in Oxidation Reactions. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_4

Download citation

Publish with us

Policies and ethics