Skip to main content

Influence of Particle Size and Interaction with the Support on Redox and Catalytic Properties of Metals, Metal Oxides, and Metal Complexes

  • Chapter
Nanotechnology in Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The importance of particle size on the catalytic properties of metals was recognized from the early days of catalysis when the concept of active sites (“particular atoms or groups of atoms on the surface of solids responsible for their catalytic activity and selectivity of”) was introduced in 1925 by H. S. Taylor.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Taylor, A theory of the catalytic surface, Proc. R. Soc. A 108, 105–111 (1925).

    Article  CAS  Google Scholar 

  2. H. S. Taylor, Fourth report of the committee on contact catalysis, J. Phys. Chem. 30, 145–171 (1926).

    Article  Google Scholar 

  3. M. Che, and C. O. Bennett, The influence of particle size on the catalytic properties of supported metals, Adv. Catal. 36, 55–172 (1989).

    CAS  Google Scholar 

  4. G. L. Haller, and D. E. Resasco, Metal—support interaction: Group VIII metals and reducible oxides, Adv. Catal. 36, 173–235 (1989).

    CAS  Google Scholar 

  5. P. Ratnasamy, A. J. Leonard, L. Rodrique, and J. J. Fripiat, Structure and surface properties of supported platinum catalysts, J. Catal. 29, 374–384 (1973).

    Article  CAS  Google Scholar 

  6. B.C.H. Steele, and A. Heinzel, Material for fuel-cell technologies, Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  7. L. Schlapbach, and A. Zuttel, Hydrogen-storage materials for mobile applications, Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  8. R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell, Adv. Mater. 12, 1465–1469 (2000).

    Article  CAS  Google Scholar 

  9. R. J. Farrauto, and R. M. Heck, Environmental catalysis into the 21st Century, Catal. Today 55, 179–187 (2000).

    Article  CAS  Google Scholar 

  10. S. C. Singhal, Status of solid oxide fuel cells, Adv. Sci. Technol. 24, 3–14 (1999).

    CAS  Google Scholar 

  11. M. Mamak, N. Coombs, and G. Ozin, Mesoporous yttria—zirconia and metal—yttria—zirconia solid solutions for fuel cells, Adv. Mater. 12, 198–202 (2000).

    Article  CAS  Google Scholar 

  12. M. Mamak, N. Coombs, and G. Ozin, Self-assembling solid-oxide fuel cell materials: mesoporous yttria—zirconia and metal—yttria—zirconia solid solutions, J. Am. Chem. Soc. 122, 8932–8939 (2000).

    Article  CAS  Google Scholar 

  13. M. Mamak, N.Coombs, and G. Ozin, Mesoporous nickel-yttria-zirconia fuel cell materials, Chem. Mater. 13, 3564–3570 (2001).

    Article  CAS  Google Scholar 

  14. P. Bera, S. Mitra, S. Sampath, and M. S. Hegde, Promoting effect of ceria in a Cu/CeO2 catalyst: Lowering of redox potentials of Cu species in the CeO2 matrix, Chem. Commun. 10, 927–928 (2001).

    Article  Google Scholar 

  15. A. Martinez-Arias, J. M. Coronado, R. Cataluna, J. C. Conesa, and J. C. Soria, Influence of mutual platinum-dispersed ceria interactions on the promoting effect of ceria for the CO oxidation reaction in a Pt/CeO2/Al2O3 catalyst, J. Phys. Chem. B 102, 4357–4365 (1998).

    Article  CAS  Google Scholar 

  16. D. Skarmoutsos, F. Tietz, and P. Nikolopoulos, Structure—property relationships for Ni/YSZ and Ni/(YSZ + TiO2) cermets, Fuel Cells 1, 243–248 (2001).

    Article  CAS  Google Scholar 

  17. T. Takeguchi, S.-n. Furukawa and M. Inoue, Hydrogen spillover from NiO to the large surface area CeO2—ZrO2 solid solution and activity of the NiO/CeO2—ZrO2 catalysts for partial oxidation of methane, J. Catal. 202, 14–24 (2001).

    Article  CAS  Google Scholar 

  18. J. Sfeir, P. A. Buffat, P. Möckli, N. Xanthopoulos, R. Vasquez, H. J. Mathieu, J. Van herle, and K. Ravindranathan Thampi, Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anode, J. Catal. 202, 229–244 (2001).

    Article  CAS  Google Scholar 

  19. N. Kiratzis, P. Holtappels, C. E. Hatchwell, M. Mogensen, and J. T. S. Irvine, Preparation and characterization of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes, Fuel Cells 1, 211–218 (2001).

    Article  CAS  Google Scholar 

  20. P. Ratnasamy, D. Srinivas, H. S. Soni, A. J. Chandwadkar, H. S. Poddar, C. S. Gopinath, and B. S. Rao, Crystallite, mesoporous NiO—ZrO2-based solid oxide fuel cell catalysts, Stud. Surf. Sci. Catal. 135, 1270–1277 (2001).

    CAS  Google Scholar 

  21. P. Ratnasamy, Crystalline, mesoporous ceria—zirconia based reforming catalysts for PEM fuel cells, Preprints Symp.—Am. Chem. Soc., Div. Fuel Chem. 46, 635–640 (2001).

    CAS  Google Scholar 

  22. D. Srinivas, C. V. V. Satyanarayana, H. S. Poddar, and P. Ratnasamy, Structural studies on NiO—CeO2—ZrO2 catalysts for steam reforming of ethanol, Appl. Catal. A: General 246, 323–334 (2003).

    Article  CAS  Google Scholar 

  23. A. Martínez-Arias, M. Fernández-García, V. Ballesteros, L.N. Salamanca, J.C. Conesa, C. Otero and J. Soria, Characterization of high surface area Zr—Ce (1:1) mixed oxide prepared by a microemulsion method, Langmuir 15, 4796–4802 (1999).

    Article  Google Scholar 

  24. A. Martínez-Arias, M. Fernández-García, L.N. Salamanca, R.X. Valenzuela, J.C. Conesa, and J. Soria, Structural and redox properties of ceria in alumina-supported ceria catalyst supports, J. Phys. Chem. B 104, 4038–4046 (2000).

    Article  CAS  Google Scholar 

  25. A. Martínez-Arias, M. Fernández-García, C. Belver, J. C. Conesa, and J. Soria, EPR study of oxygen handling properties of ceria, zirconia and Zr—Ce (1:1) mixed oxide samples, Catal. Lett. 65, 197–204 (2001).

    Article  Google Scholar 

  26. E. Mamontov, T. Egami, R. Brezny, M. Koranne, and S. Tyagi, Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria—zirconia, J. Phys. Chem. B 104, 11110–11116 (2000).

    Article  CAS  Google Scholar 

  27. H. Vidal, S. Bernal, J. Kašpar, M. Pijolat, V. Perrichon, G. Blanco, J. M. Pintado, R.T. Baker, G. Colona and F. Fally, Influence of high temperature treatments under net oxidizing and reducing conditions on the oxygen storage and buffering properties of a Ce0.68Zr0.32O2 mixed oxide, Catal. Today 54, 93–100 (1999).

    Article  CAS  Google Scholar 

  28. Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, X-ray absorption fine structure analysis of local structure of CeO2—ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1), Catal. Today 74, 225–234 (2002).

    Article  CAS  Google Scholar 

  29. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. F. Muilenberg, In Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, USA 1979).

    Google Scholar 

  30. A. Badri, C. Binet and J.-C. Lavalley, An FT-IR Study of Surface Ceria Hydroxyl Groups During a Redox Process with H2, J. Chem. Soc. Faraday Trans. 92, 4669–4673 (1996).

    Article  CAS  Google Scholar 

  31. V. Rives, and S. Kannan, Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2 + and Al3+, J. Mater. Chem. 10, 489–495 (2000).

    Article  CAS  Google Scholar 

  32. A. Bensalem, F. Bozon-Verduraz, M. Delamar, and G. Bugli, Preparation and characterization of highly dispersed silica-supported ceria, Appl. Catal. A: Gen. 121, 81–93 (1995).

    Article  CAS  Google Scholar 

  33. A. Bensalem, J. C. Muller, and F. Bozon-Verduraz, From bulk CeO2 to supported cerium—oxygen clusters: A diffuse reflectance approach, J. Chem. Soc. Faraday Trans. 88, 153–154 (1992).

    Article  CAS  Google Scholar 

  34. A.B.P. Lever, In Inorganic Electronic Spectroscopy, 2nd edn, (Elsevier, Amsterdam 1984).

    Google Scholar 

  35. B. Scheffer, J.J. Heijeinga, and J.A. Moulijn, An electron spectroscopy and X-ray diffraction study of nickel oxide/alumina and nickel oxide/tungsten trioxide/alumina catalysts, J. Phys. Chem. 91, 4752–4759 (1987).

    Article  CAS  Google Scholar 

  36. M. Lo Jacono, M. Schiavello, and A. Cimino, Structural, magnetic and optical properties of nickel oxide supported on η - and γ -aluminas, J. Phys. Chem. 75, 1044–1050 (1971).

    Article  Google Scholar 

  37. Z. Chang, Z. Zhu, and L. Kevan, Electron spin resonance of Ni(I) in Ni-containing MCM-41 molecular sieves, J. Phys. Chem. B 103, 9442–9449 (1999).

    Article  CAS  Google Scholar 

  38. J. E. Wertz, and J. R. Bolton, In Electron Spin Resonance: Elementary Theory and Practical Applications, (McGraw-Hill, New York 1972).

    Google Scholar 

  39. M. Che, M. Richard, and D. Olivier ferromagnetic resonance study of dispersed nickel particles prepared by reduction of nickel ion-exchanged X-zeolites by hydrogen molecules or hydrogen atom beams, J. Chem. Soc. Faraday Trans. I 76, 1526–1534 (1980).

    Article  CAS  Google Scholar 

  40. B. R. Loy, and C.R. Noddings, A ferromagnetic resonance study of chemisorbed hydrogen on a nickel catalyst, J. Catal. 3, 1–6 (1964).

    Article  CAS  Google Scholar 

  41. C. D. Dudfield, R. Chen, and P. L. Adcock, A carbon monoxide PROX reactor for pem fuel cell automotive application, Int. J. Hydrogen Energy 26, 763–775 (2001).

    Article  CAS  Google Scholar 

  42. M. Haruta, and M. Daté, Advances in catalysis of Au nanoparticles, Appl. Catal. A. Gen. 222, 427–437 (2001).

    Article  CAS  Google Scholar 

  43. G. C. Bond, and D. T. Thompson, Catalysis by gold, Catal. Rev.—Sci. Eng. 41, 319–399 (1999).

    Article  CAS  Google Scholar 

  44. M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  45. M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, CO oxidation over supported gold catalysts—“Inert” and “active” support materials and their role for the oxygen supply during reaction, J. Catal. 197, 113–122 (2001).

    Article  CAS  Google Scholar 

  46. D. Brunel, N. Bellocq, P. Sutra, A. Cauvel, M. Laspéras, P. Moreau, F. Di Renzo, A. Galarneau, and F. Fajula, Transition-metal ligands bound onto the micelle-templated silica surface, Coord. Chem. Rev. 180, 1085–1108 (1998).

    Article  Google Scholar 

  47. C. Satyanarayana, J. Trissa, M. Sachin, D. Chinmay, S. B. Halligudi, B. S. Rao, M. Sastry, and P. Ratnasamy, Au and Au—Pt bimetallic nanoparticles in MCM-41 materials: Applications in CO preferential oxidation, Stud. Surf. Sci. Catal. 146, 573–576 (2003).

    Google Scholar 

  48. B. Notari, Microporous crystalline titanium silicates, Adv. Catal. 41, 253–334 (1996).

    CAS  Google Scholar 

  49. G. N. Vayssilov, Structural and physicochemical features of titanium silicates, Catal. Rev.—Sci. Eng. 39, 209–251 (1997).

    Article  CAS  Google Scholar 

  50. P. Ratnasamy, D. Srinivas, and H. Knözinger, Active sites and reactive intermediates in titanium silicate molecular sieves, Adv. Catal. 48, 1–169 (2004).

    CAS  Google Scholar 

  51. J. D. Jewson, C. A. Jones, and R. M. Dessau, Direct epoxidation process of olefins using palladium—titanosilicate catalyst containing gold promoter, PCT Int. Appl. WO 2001062380 A1 30 Aug 2001.

    Google Scholar 

  52. R. Meiers, U. Dingerdissen, and W. F. Hölderich, Synthesis of propylene oxide from propylene, oxygen and hydrogen catalyzed by palladium—platinum—containing titanium silicate, J. Catal. 176, 376–386 (1998).

    Article  CAS  Google Scholar 

  53. R. Meiers, and W. F. Hölderich, Epoxidation of propylene and direct synthesis of hydrogen peroxide by hydrogen and oxygen, Catal. Lett. 59, 161–163 (1999).

    Article  CAS  Google Scholar 

  54. G. Jenzer, T. Mallat, M. Maciejewski, F. Eigenmann, and A. Baiker, Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 Catalyst, Appl. Catal. A: Gen. 208, 125–133 (2001).

    Article  CAS  Google Scholar 

  55. E. E. Stangland, K. B. Stavens, R. P. Andres, and W. N. Delgass, Characterization of gold—titania catalysts viz., oxidation of propylene to propylene oxide, J. Catal. 191, 332–347 (2000).

    Article  CAS  Google Scholar 

  56. C. Qi, T. Akita, M. Okumura, and M. Haruta, Epoxidation of propylene over gold catalysts supported on non-porous silica, Appl. Catal. A: Gen. 218, 81–89 (2001).

    Article  CAS  Google Scholar 

  57. T. A. Nijhuis, B. J. Huizinga, M. Makkee, and J. A. Moulijn, Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports, Ind. Eng. Chem. Res. 38, 884–891 (1999).

    Article  CAS  Google Scholar 

  58. V. N. Shetti, P. Manikandan, D. Srinivas, and P. Ratnasamy, Reactive oxygen species in epoxidation reactions over titanosilicate molecular sieves, J. Catal. 216, 461–467 (2003).

    Article  CAS  Google Scholar 

  59. R. Bal, K. Chaudhari, D. Srinivas, S. Sivasanker, and P. Ratnasamy, Redox and catalytic chemistry of Ti in titanosilicate molecular sieves: An EPR investigation, J. Mol. Catal. A: Chem. 162, 199–207 (2000).

    Article  CAS  Google Scholar 

  60. D. Srinivas, P. Manikandan, S. C. Laha, R. Kumar, and P. Ratnasamy, Reactive oxo-titanium species in titanosilicate molecular sieves: EPR investigations and structure—Activity correlations, J. Catal. 217, 160–171 (2003).

    CAS  Google Scholar 

  61. D.L. Trimm and Z. I. önsan, Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles, Catal. Rev. Sci. Tech. 43, 31–84 (2001).

    Article  CAS  Google Scholar 

  62. T. V. Choudhary, and D.W. Goodman, CO-free fuel processing for fuel cell applications, Catal. Today 77, 65–78 (2002).

    Article  CAS  Google Scholar 

  63. J. R. Rostrup-Nielson, and T. Rostrup-Nielson, Large-scale hydrogen production, Cattech 6, 150–159 (2002).

    Article  Google Scholar 

  64. R. M. Sanchez, K. Ueda, K. Tanaka, and M. Haruta, Selective oxidation of CO in hydrogen over gold supported on manganese oxide, J. Catal. 168, 125–127 (1997).

    Article  CAS  Google Scholar 

  65. O. Korotkikh, and R.Farrauto, Selective catalytic oxidation of CO in H2: Fuel cell applications, Catal. Today 62, 249–254 (2000).

    Article  CAS  Google Scholar 

  66. P. Ratnasamy, D. Srinivas, C. V. V. Satyanarayana, P. Manikandan, R. S. Senthil Kumaran, M. Sachin, and V. N. Shetti, Influence of the support on the preferential oxidation of CO in hydrogen-rich stream reformates over the CuO—CeO2—ZrO2 system, J. Catal. 221, 455–465 (2004).

    Article  CAS  Google Scholar 

  67. H. Tanaka, S.-I. Ito, S. Kameoka, K. Tomishige, and K. Kunimori, Promoting effect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts, Catal. Commun. 4, 1–4 (2003).

    Article  CAS  Google Scholar 

  68. W. Liu, and M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu—CeO2, Chem. Eng. J. 64, 283–294 (1996).

    CAS  Google Scholar 

  69. L. Kundakovic, and M. Flytzani-Stephanopoulos, Reduction characterization of copper oxide in cerium and zirconium oxide systems, Appl. Catal. A: Gen. 171, 13–29 (1998).

    Article  CAS  Google Scholar 

  70. G. Wrobel, C. Lamonier, A. Bennani, A. D'Huysser, and A. Aboukais, Effect of incorporation of copper or nickel on hydrogen storage in ceria: Mechanism of reduction, J. Chem. Soc. Faraday Trans. 92, 2001–2009 (1996).

    Article  CAS  Google Scholar 

  71. H. Praliaud, S. Mikhailenko, Z. Chajar, and M. Primet, Surface and bulk properties of Cu-ZSM-5 and Cu/Al2O3 solids during redox treatments: Correlation with the selective reduction of nitric oxide by hydrocarbons, Appl. Catal. B. Environ. 16, 359–374 (1998).

    Article  CAS  Google Scholar 

  72. S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, and F. Ohashi, Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation, J. Catal. 194, 373 (2000).

    Article  CAS  Google Scholar 

  73. P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, Spectroscopic studies of Cu2+ ions in sold—gel derived silica matrix, Bull. Mater. Sci. 25, 69–74 (2002).

    CAS  Google Scholar 

  74. P. G. Harrison, I. K. Ball, W. Azelee, W. Daniell, and D. Goldfarb, Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO oxidation catalysts, Chem. Mater. 12, 3715–3725 (2000).

    Article  CAS  Google Scholar 

  75. A. Aboukais, A. Bennani, C. F. Aïssi, G. Wrobel, M. Guelton, and J. C. Vedrine, High resolved electron paramagnetic resonance spectrum of copper(II) ion pairs in CuCe Oxide, J. Chem. Soc. Faraday Trans. 88, 615–620 (1992).

    Article  CAS  Google Scholar 

  76. M. M. Günter, T. Ressler, R. E. Jentoft, and B. Bems, Redox behavior of copper oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal. 203, 133–149 (2001).

    Article  CAS  Google Scholar 

  77. R.J. Farrauto, and C. Bartholomew, In Introduction to Industrial Catalytic Processes (Chapman & Hall, London, UK 1997) Chapters 1, 38, 39.

    Google Scholar 

  78. K. J. Balkus, Jr., and A. G. Gabrielov, Zeolite encapsulated metal complexes, J. Incl. Phenom. Mol. Recog. Chem. 21, 159–184 (1995).

    CAS  Google Scholar 

  79. K. J. Balkus, Jr., A. G. Gabrielov, S. L. Bell, S. Bedioui, L Roué, and J. Devynck, Zeolite encapsulated cobalt(II) and copper(II) perfluorophthalocyanines: Synthesis and characterization, Inorg. Chem. 33, 67–72 (1994).

    Article  CAS  Google Scholar 

  80. N. Herron, Toward Si-based life: Zeolites and enzyme mimics, Chemtech 19, 542–548 (1989).

    CAS  Google Scholar 

  81. B. T. Holland, C. Walkup, and A. Stein, Encapsulation, stabilization and catalytic properties of flexible metal porphyrin complexes in MCM-41 with minimal electronic perturbation by the environment, J. Phys. Chem. B 102, 4301–4309 (1998).

    Article  CAS  Google Scholar 

  82. C. Bowers, and P. K. Dutta, Olefin oxidation by zeolite-encapsulated Mn(salen)+ complexes under ambient conditions, J. Catal. 122, 271–279 (1990).

    Article  CAS  Google Scholar 

  83. R. F. Parton, C. P. Bezoukheanova, J. Grobet, P. J. Grobet, and P. A. Jacobs, Synthesis, characterization and catalytic performance of nitro-substituted Fe-phthalocyanines on zeolite-Y, Stud. Surf. Sci. Catal. 83, 371–378 (1994).

    Article  CAS  Google Scholar 

  84. R. Raja, and P. Ratnasamy, Direct conversion of methane to methanol, Appl. Catal. A 158, L7—L15 (1997).

    Article  CAS  Google Scholar 

  85. C. R. Jacob, S. P. Varkey, and P. Ratnasamy, Zeolite encapsulated copper (X2-Salen) complexes, Appl. Catal. A 168, 353–364 (1998).

    Article  CAS  Google Scholar 

  86. C. R. Jacob, S. P. Varkey, and P. Ratnasamy, Selective oxidation over copper and manganese salens encapsulated in zeolites, Microporous Mesoporous Mater. 22, 465–474 (1998).

    Article  CAS  Google Scholar 

  87. R. Raja, and P. Ratnasamy, Oxidation of cyclohexane over copper phalocyanines encapsulated in zeolites, Catal. Lett. 48, 1–10 (1998).

    Article  Google Scholar 

  88. S. Chavan, D.Srinivas, and P. Ratnasamy, Structure and catalytic properties of dimeric copper(II) acetato complexes encapsulated in zeolite-Y, J. Catal. 192, 286–295 (2000).

    Article  CAS  Google Scholar 

  89. R. Raja, and P. Ratnasamy, Activation of dioxygen by copper complexes incorporated in molecular sieves, J. Mol. Catal. A 100, 93–102 (1995).

    Article  Google Scholar 

  90. M. Eswaramoorthy, S. Neeraj, and C. N. R. Rao, High Catalytic Efficiency of Transition Metal Complexes Encapsulated in a Mesoporous Phase, J. Chem. Soc. Chem. Commun. 5, 615–616 (1998).

    Google Scholar 

  91. E. I. Solomon, and M. D. Lowery, Electronic structure contributions to function in bioinorganic chemistry, Science 259, 1575–1581 (1993).

    Article  CAS  Google Scholar 

  92. T. R. Felthouse, The chemistry, structure and metal—metal bonding in compounds of rhodium(II), Prog. Inorg. Chem. 29, 73–166 (1982).

    Article  CAS  Google Scholar 

  93. K. J. Balkus, Jr., A. A. Welch, and B. E. Gnade, The preparation and characterization of rhodium(III) salens complexes encapsulated in zeolites X and Y, zeolites 10, 722–729 (1990).

    Article  CAS  Google Scholar 

  94. M. M. Bhadbhade, and D. Srinivas, Effects on molecular association, chelate conformation and reactivity toward substitution in Cu(5-X-salen) complexes, salen2- = N, N′ -ethylenebis (salicylidenaminato), X = H, CH3O and Cl: synthesis, X-ray structures and EPR investigations, Inorg. Chem. 32, 5458–5466 (1993).

    Article  CAS  Google Scholar 

  95. M. M. Bhadbhade, and D. Srinivas, Spin crossover in substituted N, N′ -ethylenebis (salicylidenamine) iron(III) complexes: variable temperature EPR and X-ray structures of [Fe(5-CH3O-salen)(Im)2]Y, where Y = ClO- 4 and Cl-, Polyhedron 17, 2699–2711 (1998).

    Article  CAS  Google Scholar 

  96. S. Deshpande, D.Srinivas, and P. Ratnasamy, EPR and catalytic investigation of Cu(salen) complexes encapsulated in zeolites, J. Catal. 188, 261–269 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Srinivas, D., Ratnasamy, P. (2007). Influence of Particle Size and Interaction with the Support on Redox and Catalytic Properties of Metals, Metal Oxides, and Metal Complexes. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_11

Download citation

Publish with us

Policies and ethics