Skip to main content

Quantum approximate methods for the atomistic modeling of multicomponent alloys

  • Chapter
Applied Computational Materials Modeling

Abstract

This chapter describes the role of quantum approximate methods in the understanding of complex multicomponent alloys at the atomic level. The need to accelerate materials design programs based on economical and efficient modeling techniques provides the framework for the introduction of approximations and simplifications in otherwise rigorous theoretical schemes. As a promising example of the role that such approximate methods might have in the development of complex systems, the BFS method for alloys is presented and applied to Ru-rich Ni-base superalloys and also to the NiAl(Ti, Cu) system, highlighting the benefits that can be obtained from introducing simple modeling techniques to the investigation of such complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bozzolo and J. E. Garcés, in Atomistic modeling of surface alloys, Surface alloys and alloy surfaces, The Chemical Physics of Solid Surfaces, Vol. 10, Elsevier (2002).

    Google Scholar 

  2. S. Cottenier, When do we understand solids?, Physicalia Magazine 26, 3 (2004).

    Google Scholar 

  3. D. Farías, M. A. Niño, J. J. de Miguel, R. Miranda, J. Morse and G. Bozzolo, Growth of Co and Fe on Cu(111): Experiment and BFS based calculations, Appl. Surf. Sci. 219 (2003) 80.

    Article  CAS  Google Scholar 

  4. A. Canzian, H. Mosca and G. Bozzolo, Atomistic Modeling of Pt Deposition on Cu(111) and Cu deposition on Pt(111), Surf. Rev. Lett. 11, 1 (2004).

    Article  Google Scholar 

  5. G. Bozzolo, J. E. Garcés and G. Demarco, Atomistic modeling of Au deposition on a Cu substrate, Surf. Sci. 532/535, 41 (2003).

    Article  CAS  Google Scholar 

  6. J.E. Garcés, G. Bozzolo, P. Abel, and H. Mosca, Atomistic modeling of Pd/Cu(110) surface alloy formation, Appl. Surf. Sci. 167 18 (2000).

    Article  Google Scholar 

  7. H. Mosca, J. E. Garcés, and G. Bozzolo, Surface ternary alloys of (Cu,Au)/Ni(110), Surf. Sci. 454–456, 707 (2000).

    Article  Google Scholar 

  8. A. Canzian, H. Mosca and G. Bozzolo, Deposition of Fe on Nb(110) and Nb on Fe(110), Surf. Sci. 574, 287 (2005).

    Article  CAS  Google Scholar 

  9. G. Bozzolo, J. E. Garcés, R. D. Noebe, P. Abel and H. Mosca, Atomistic modeling of surface and bulk properties of Cu, Pd, and the Cu-Pd system, Prog. Surf. Sci. 73, 79 (2003).

    Article  CAS  Google Scholar 

  10. G. Bozzolo, R. D. Noebe and H. Mosca, Atomistic Modeling of Pd Site Preference in NiTi, J. Alloys and Comp. 386, 125 (2005).

    Article  CAS  Google Scholar 

  11. G. Bozzolo, R. D. Noebe, and C. Amador, Site occupancy of ternary additions to B2 alloys, Intermetallics 10, 149 (2002).

    Article  CAS  Google Scholar 

  12. J. R. Smith, T. Perry, A. Banerjea, J. Ferrante and G. Bozzolo, Equivalent crystal theory of metals and semiconductor surfaces and defects, Phys. Rev. B 44, 6444 (1991).

    Article  CAS  Google Scholar 

  13. James H. Rose, John R. Smith and John Ferrante, Universal features of bonding in metals, Phys. Rev. B 28, 1835 (1983).

    Article  CAS  Google Scholar 

  14. P. Blaha, K. Schwartz and J. Luitz, WIEN97, Vienna University of Technology. Improved and updated Unix version of the copyrighted WIEN Code, P. Blaha, K. Schwartz, P. Sorantin and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

    Article  CAS  Google Scholar 

  15. O. K. Andersen, Linear Methods in Band Theory, Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  16. P. Légaré, G. F. Cabeza and N. J. Castellani, Platinum overlayers on Co(0001) and Ni(111): numerical simulation of surface alloying, Surf. Sci. 441, 461 (1999).

    Article  Google Scholar 

  17. P. Abel, and G. Bozzolo, Calculation of the thermal expansion coefficients of pure elements and their alloys, Scripta Mater. 46, 557 (2002).

    Article  CAS  Google Scholar 

  18. R. L. Fleischer, R. D. Field, C. L. Briant, Mechanical properties of high-temperature alloys of AlRu, Metall. Trans. A 22 403 (1991).

    Article  Google Scholar 

  19. R. L. Fleischer, Boron and off-stoichiometry effects on the strength and ductility of AlRu, Met. Trans. A 24, 227 (1993).

    Article  Google Scholar 

  20. R. L. Fleischer, D. W. McKee, Mechanical and oxidation properties of AlRu-based high-temperature alloys, Met. Trans. A 24 759 (1993).

    Article  Google Scholar 

  21. R. Fleischer, Substitutional solutes in AlRu I. Effects of solute on moduli, lattice parameters and vacancy production, Acta metal. mater. 41 863 (1993).

    Article  CAS  Google Scholar 

  22. R. Fleischer, Substitutional solutes in AlRu II. Hardening and correlations with defect structure, Acta metal mater. 41 119 (1993).

    Google Scholar 

  23. I. M. Wolff, G. Sauthoff, Role of an intergranular phase in RuAl with substitutional additions, Acta mater. 45 2949 (1997).

    Article  CAS  Google Scholar 

  24. S. Mi, S. Balanetskyy and B, Grushko, A study of the Al-rich part of the Al-Ru alloy system, Intermetallics 11, 643 (2003).

    Article  CAS  Google Scholar 

  25. I. M. Wolff, G. Sauthoff, Mechanical properties of Ru-Ni-Al alloys, Met. Mat. Trans. A 27 1395 (1996).

    Article  Google Scholar 

  26. I. M. Wolff, G. Sauthoff, High-temperature behavior of precious metal base composites, Met. Mat. Trans. A 27 2642 (1996).

    Article  Google Scholar 

  27. S. Chakravorty, D. R. F. West, Phase equilibria between NiAl and RuAl in the Ni-Al-Ru system, Scripta Metall. 19 1355 (1985).

    Article  CAS  Google Scholar 

  28. S. Chakravorty, D. R. F. West, The constitution of the Ni-Al-Ru system, J. Mater. Sci. 21 2721 (1986).

    Article  CAS  Google Scholar 

  29. A. L. R. Sabariz, G. Taylor, Preparation, structure and mechanical properties of RuAl and (Ru,Ni)Al alloys, Mat. Res. Soc. Symp. Proc. 460, 611 (1997).

    CAS  Google Scholar 

  30. K. W. Liu, F. M. Muecklich, W. Pitschke, R. Birringer, K. Wetzig, Formation of nanocrystalline B2-structured (Ru, Ni)Al in the ternary Ru-Al-Ni system by mechanical alloying and its thermal stability, Mat. Sci. Eng. A 313, 187 (2001).

    Article  Google Scholar 

  31. I. J. Horner, N. Hall, L. A. Cornish, M. J. Witcomb, M. B. Cortie, T. D. Boniface, An investigation of the B2 phase between AlRu and AlNi in the Al-Ni-Ru ternary system, J. Alloys and Compounds 264 173 (1998).

    Article  CAS  Google Scholar 

  32. I. Vjunitsky, E. Schönfeld, T. Kaiser, W. Steurer and V. Shklover, Study of phase states and oxidation of B2-structure based Al-Ni-Ru-M alloys, Intermetallics 13, 35 (2005).

    CAS  Google Scholar 

  33. Q. Feng, T. K. Nandy, T. M. Pollock, Observation of a Ru-rich Heusler phase in a multicomponent Ni-base superalloy, Scripta Mater. 50, 849 (2004).

    Article  CAS  Google Scholar 

  34. Q. Feng, T. K. Nandy, B. Tryon, T. M. Pollock, Deformation of Ru-Al-Ta ternary alloys, Intermetallics 12, 755 (2004).

    Article  CAS  Google Scholar 

  35. Q. Feng, T. K. Nandy, T. M. Pollock, Solidification of high-refractory ruthenium-containing superalloys, Acta Mater. 51, 269 (2003).

    Article  CAS  Google Scholar 

  36. A. P. Ofori, C. J. Rossouw, C. J. Humphreys, Determining the site occupancy of Ru in the L12 phase of a Ni-base superalloy using ALCHEMI, Acta Mater. 53, 97 (2005).

    Article  CAS  Google Scholar 

  37. R. S. Polvani, W. S. Tzeng, P. R. Strutt, High temperature creep in a semi-coherent NiAl-Ni2AlTi alloy, Met. Trans. A 7, 33 (1976).

    Article  Google Scholar 

  38. P. Cerba, M. Vilasi, B. Malaman, J. Steinmetz, Caractérisation des trois nouvelles phases ternaires, Nb(Pd,Al)2 et Nb(Ru,Al)2 de type MgZn2, et NbRu2Al de type BiF3, dans les systémes Nb-Pd-Al et Nb-Ru-Al, J. Alloys and Compounds 57, 201 (1993).

    Google Scholar 

  39. P. Villars, L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Metals Park: American Society for Metals (1986).

    Google Scholar 

  40. M. H. Yoo, T. Takasuga, S. Hanada, O. Izumi, Slip modes in B2-type intermetallic alloys, Mater. Trans. JIM 31, 435 (1990).

    CAS  Google Scholar 

  41. D. Hackenbracht, J. Kubler, Electronic, magnetic and cohesive properties of some nickel-aluminum compounds, J. Phys. F 10, 427 (1980).

    Article  CAS  Google Scholar 

  42. R. Fleischer, D. M. Dimiduk, H. A. Lipsitt, Intermetallic compounds for strong high-temperature materials: status and potential, Annu. Rev. Mater. Sci. 19, 231 (1989).

    Article  CAS  Google Scholar 

  43. V. L. Moruzzi, A. R. Williams, J. F. Janak, Electronic, magnetic and cohesive properties of some nickel-aluminium compounds, Phys. Rev. B 10, 4856 (1974).

    Article  CAS  Google Scholar 

  44. D. J. Singh, Electronic structure, magnetism, and stability of Co-doped NiAl, Phys. Rev. B 46, 14392 (1992).

    Article  CAS  Google Scholar 

  45. D. N. Manh, D. G. Pettifor, Electronic structure, phase stability and elastic moduli of AB transition metal aluminides, Intermetallics 7, 1095 (1999).

    Article  Google Scholar 

  46. I. Zou, C. L. Fu, Structural, electronic, and magnetic properties of 3d transition-metal aluminides with equiatomic composition, Phys. Rev. B 51, 2115 (1995).

    Article  CAS  Google Scholar 

  47. W. Lin, J. H. Xu, A. J. Freeman, Cohesive properties, electronic structure, and bonding characteristies of RuAl. A comparison to NiAl, J. Mater. Res. 7, 592 (1992).

    Article  CAS  Google Scholar 

  48. A. R. Williams, J. Kuebler, C. D. Gelatt Jr., Cohesive properties of metallic compounds: Augmented-spherical-wave calculations, Phys. Rev. B 19, 6094 (1979).

    Article  CAS  Google Scholar 

  49. L. E. Edshammar, An x-ray investigation of Ruthenium-Aluminium alloys, Acta Chemica Scandinavica 20, 427 (1966).

    Article  CAS  Google Scholar 

  50. W. G. Jung, O. J. Kleppa, Standard molar enthalpies of formation of MeAl (Me=Ru, Rh, Os, Ir), Met. Trans. B 23, 53 (1992).

    Article  Google Scholar 

  51. D. N. Manh, A. T. Paxton, D. G. Pettifor, A. Pasturel, On the phase stability of transition metal trialuminide compounds, Intermetallics 3, 9 (1995).

    Article  CAS  Google Scholar 

  52. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley. Selected Values of the Thermodynamic Properties of Binary Alloys, Metals Park: American Society of Metals: 1973; O. Kubaschewski, E. L. Evans, C. B. Alcock, Metallurgical Thermochemistry, 4th Ed. Oxford, Pergamon Press (1967).

    Google Scholar 

  53. K. Rzyman, Z. Moser, R. E. Watson, M. J. Weinert, Enthalpies of formation of AlNi: Experiment versus theory, J. Phase Equil. 19, 106 (1998).

    Article  CAS  Google Scholar 

  54. G. Bozzolo, J. Khalil, R. D. Noebe, Modeling of the site preference in ternary B2-ordered Ni-Al-Fe alloys, Comp. Mat. Sci. 24, 257 (2002).

    Article  Google Scholar 

  55. E. Raub, Die struktur der festen Tantal-Ruthenium-legierungen, Z. Metallkd 54, 451 (1963).

    CAS  Google Scholar 

  56. I. M. Anderson, A. J. Duncan, and J. Bentley, Determination of site occupancies in aluminide intermetallics by alchemi, Mat. Res. Soc. Symp. Proc., 364, 443 (1995).

    CAS  Google Scholar 

  57. A. Wilson and J. Howe, Statistical alchemi study of the site occupancies of Ti and Cu in NiAl, Scripta Mater., 41, 327 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bozzolo, G., Garcés, J., Mosca, H., Gargano, P., Noebe, R.D., Abel, P. (2007). Quantum approximate methods for the atomistic modeling of multicomponent alloys. In: Bozzolo, G., Noebe, R.D., Abel, P.B., Vij, D. (eds) Applied Computational Materials Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34565-9_7

Download citation

Publish with us

Policies and ethics