Skip to main content

How does a crystal grow? Experiments, models and simulations from the nano- to the micro-scale regime

  • Chapter
Applied Computational Materials Modeling

Abstract

Modern research in the field of small metallic systems has confirmed that many nanoparticles take Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A good example is the icosahedral (Ih) particle that only shows {111} faces that produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this chapter, we discuss the structure and shape of mono- and bimetallic nanoparticles in the size range from 1–300 nm. First, AuPd nanoparticles (1–2 nm) that show dodecahedral atomic growth packing. Next, in the range of 2–5 nm, we discuss a surface reconstruction phenomenon observed also on AuPd and AuCu nanoparticles. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next, we review a monometallic system (≈5 nm) that we termed the decmon. Finally, we present icosahedrally derived star gold nanocrystals (100–300 nm) which resemble the great stellated dodechaedron, a Kepler-Poisont solid. We conclude that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids. As the size increases, they tend to adopt Archimedean related shapes and then beyond the Archimedean (Kepler-Poisont) solids, up to the bulk structure of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. M. Coxeter, Regular Polytopes; Dover Publications Inc., New York, 1973.

    Google Scholar 

  2. M. J. Wenninger, Polyhedron Models, University Press, Cambridge, 1971.

    Google Scholar 

  3. A. Pugh, Polyhedra: A Visual Approach, University of California Press, Berkeley, 1976.

    Google Scholar 

  4. J. M. Montejano-Carrizales, J. L. Rodrguez-López, Umapada Pal, Mario Miki-Yoshida, and Miguel José-Yacamán, The Completion of the Platonic Atomic Polyhedra: The Dodecahedron, Small 2, 351 (2006).

    Article  CAS  Google Scholar 

  5. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. Yang, Angew. Chem. Int. Ed. 43, 3673 (2004).

    Article  CAS  Google Scholar 

  6. Z. L. Wang, T. S. Ahmad, and M. A. El-Sayed, Surf. Sci. 380, 302 (1997).

    Article  CAS  Google Scholar 

  7. C. R. Henry, Prog. Surf. Sci. 80, 92 (2005).

    Article  CAS  Google Scholar 

  8. P. R. Cromwell, Polyhedra, Cambridge University Press, New York, 1997.

    Google Scholar 

  9. O. Echt, K. Sattler, E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).

    Article  CAS  Google Scholar 

  10. T. P. Martin, Phys. Rep. 273, 199 (1996).

    Article  CAS  Google Scholar 

  11. T. P. Martin, U. Näher, H. Schaber, U. Zimmermann, Phys. Rev. Lett. 70, 3079 (1993).

    Article  CAS  Google Scholar 

  12. E. L. Nagaev, Phys. Rep. 222, 199 (1992).

    Article  Google Scholar 

  13. K. Heinemann, M. J. Yacamán, C. Y. Yang and H. Poppa, J. Crystal Growth 47, 177 (1979).

    Article  CAS  Google Scholar 

  14. A. Howie and L. D. Marks, Phil. Mag. A 49, 95 (1984).

    Article  CAS  Google Scholar 

  15. B. Pauwels, D. Bernaerts, S. Amelinckx, G. Van Tendeloo, J. Joutsensaari, and E. I. Kauppinen, J. Crystal Growth 200, 126 (1999).

    Article  CAS  Google Scholar 

  16. S. Ino and S. Ogawa, J. Phys. Soc. Japan 22, 1365 (1967).

    Article  CAS  Google Scholar 

  17. J. G. Allpress and J. V. Sanders, Philos. Mag. 13, 609 (1966).

    Article  CAS  Google Scholar 

  18. L. D. Marks and D. J. Smith, J. Crystal Growth 54, 425 (1981); L. D. Marks, Philos. Mag. A 49, 81 (1984); L. D. Marks, Rep. Prog. Phys. 57, 603 (1994).

    Article  CAS  Google Scholar 

  19. M. José-Yacamán, J. A. Ascencio, H. B. Liu, J. Gardea-Torresdey, J. Vac. Sci. Tehcnol. B 19, 1091 (2001).

    Article  CAS  Google Scholar 

  20. H. Bönnemann and R. M. Richards, Eur. J. Inorg. Chem. 2001–10, 2455 (2001).

    Article  Google Scholar 

  21. L. M. Liz-Marzán, Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  22. J. L. Rodrguez-López, J. M. Montejeno-Carrizales, U. Pal, J. F. Sánchez-Ramrez, H. Troiani, D. Garca, M. Miki-Yoshida, M. José-Yacamán, Phys. Rev. Lett. 92, 196102 (2004).

    Google Scholar 

  23. J. M. Montejano-Carrizales, J. L. Rodriguez-López, and M. José-Yacamán, Geometrical properties of the decmon structure, submitted to J. Crystal Growth, (2006).

    Google Scholar 

  24. J. L. Burt, J. L. Elechiguerra, J. Reyes-Gasga, J. M. Montejano-Carrizales, and M. José-Yacamán, J. Crystal Growth 285, 681 (2005).

    Article  CAS  Google Scholar 

  25. T. Yonezawa and N. Toshima, J. Mol. Catalysis 83, 167 (1993); J. Luo et al., Chem. Mater. 17, 3086 (2005).

    Article  CAS  Google Scholar 

  26. J. M. Montejano-Carrizales, J. L. Rodrguez-López, C. Gutiérrez-Wing, M. Miki-Yoshida, and M. José-Yacamán; Crystallography and shape of nanoparticles and clusters: geometrical analysis, image, diffraction simulation and high resolution images, Chapter in: The Encyclopedia of Nanoscience and Nanotechnology. 2, 237–282 (2004); edited by H. S. Nalwa, American Scientific Publishers, Los Angeles, USA.

    Google Scholar 

  27. D. K. Saha, K. Koga, and H. Takeo, Eur. Phys. J. D 9, 539 (1999).

    Article  CAS  Google Scholar 

  28. F. C. Frank and J. S. Kasper, Acta Crystall. 11, 184 (1958); idem. F. C. Frank and J. S. Kasper, Acta Crystall. 12, 483 (1959).

    Article  CAS  Google Scholar 

  29. J. P. K. Doye, D. J. Wales, Phys. Rev. Lett. 86, 5719 (2001).

    Article  CAS  Google Scholar 

  30. Y. Gao, L. Song, P. Jiang, L. F. Liu, X. Q. Yan, Z. P. Zhou, D. F. Liu, J. X. Wang, H. J. Yuan, Z. X. Zhang, X. W. Zhao, X. Y. Dou, W. Y. Zhou, G. Wang, S. S. Xie, H. Y. Chen, and J. Q. Li, J. Crystal Growth 276, 606 (2005).

    Article  CAS  Google Scholar 

  31. R. H. Leary, J. P. K. Doye, Phys. Rev. E 60, 6320 (1999).

    Article  Google Scholar 

  32. D. R. Nelson and Frans Spaepen, in Solid State Physics: Advances in Research and Applications vol. 42, pp. 1, eds. H. Ehrenreich and D. Turnbull, Academic Press, 1989.

    Google Scholar 

  33. F. Dassenoy, M.-J. Casanove, P. Lecante, M. Verelst, E. Snoeck, A. Mosset, T. Ould Ely, C. Amiens, B. Chaudret, J. Chem. Phys. 112, 8137 (2000).

    Article  CAS  Google Scholar 

  34. W. Khon, L. J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  35. P. Ordejón, E. Artacho, M. J. Soler, Phys. Rev. B 1996, 53 (R10441); b) D. Sánchez-Portal, P. Ordejón, E. Artacho, M. J. Soler, Int. J. Quantum Chem. 65, 453 (1997); c) ibid, Phys. Status Solidi (b) 215, 809 (1999).

    Google Scholar 

  36. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  37. N. Troullier, J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  38. J. L. Rodrguez-López, (to be published 2006).

    Google Scholar 

  39. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7893 (1986).

    Article  Google Scholar 

  40. C. Mottet, G. Tréglia, and B. Legrand, Surf. Sci. 383, L797 (1997).

    Article  Google Scholar 

  41. J. L. Rodrguez-López, J. M. Montejano-Carrizales, and M. José-Yacamán, Appl. Surf. Sci. 219, 56 (2003).

    Article  CAS  Google Scholar 

  42. S. C. Hendy and B. D. Hall, Phys. Rev. B 64, 085425 (2001); S. C. Hendy and J. P. K. Doye, ibid 66, 235402 (2002).

    Google Scholar 

  43. K. Koga and K. Sugawara, Surf. Sci. 529, 23 (2003).

    Article  CAS  Google Scholar 

  44. J. M. Montejano-Carrizales, M. P. Iñiguez, and J. A. Alonso, J. Cluster Sci. 5, 287 (1994).

    Article  CAS  Google Scholar 

  45. M. José-Yacamán, in Catalytic Materials, Relationship between structure and reativity, p. 341, edited by T. E. Whyte, R. A. Betta, E. G. Deroduane, and R. T. K. Baker, American Chemical Society, New York, 1983.

    Google Scholar 

  46. A. Renou and M. Gillet, Surf. Sci. 106, 27 (1987).

    Article  Google Scholar 

  47. J. M. Dominguez and M. José-Yacamán, in Growth and properties of metal clusters, p. 493, edited by J. Bourdon, Elsevier, The Netherlands, 1980.

    Google Scholar 

  48. C. L. Cleveland, U. Landman, T. G. Schaaff, M. N. Shafigullin, P. W. Stephan, and R. L. Whetten, Phys. Rev. Lett. 79, 1873 (1997).

    Article  CAS  Google Scholar 

  49. J. A. Ascencio, M. Pérez, and M. José-Yacamán, Surf. Sci. 447, 73 (2000).

    Article  CAS  Google Scholar 

  50. M. José-Yacamán, (private communication, 2005).

    Google Scholar 

  51. E. M. Weisstein, Great Stellated Dodecahedron from MathWorld — A Wolfram Web Resource. http://mathworld.wolfram.com/GreatStellatedDodecahedron.html.

  52. E. M. Weisstein, Spiky from MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Spiky.html.

  53. Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-Sayed, J. Phys. Chem. B 104, 5417 (2000).

    Article  CAS  Google Scholar 

  54. Z. L. Wang, J. Phys. Chem. B 104, 1153 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodríguez-López, J.L., Montejano-Carrizales, J.M., José-Yacamán, M. (2007). How does a crystal grow? Experiments, models and simulations from the nano- to the micro-scale regime. In: Bozzolo, G., Noebe, R.D., Abel, P.B., Vij, D. (eds) Applied Computational Materials Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34565-9_3

Download citation

Publish with us

Policies and ethics