Skip to main content

Mesenchymal Stem Cells Increase Self-Renewal of Small Intestinal Epithelium and Accelerate Structural Recovery after Radiation Injury

  • Conference paper
Tissue Engineering

2.1. Abstract

Patients who undergo pelvic or abdominal radiotherapy may develop side effects that can be life threatening. Tissue complications caused by radiation-induced stem cell depletion may result in structural and functional alterations of the gastrointestinal (GI) tract. Stem cell therapy using mesenchymal stem cells (MSC) is a promising approach for replenishment of the depleted stem cell compartment during radiotherapy. There is little information on the therapeutic potential of MSC in injured-GI tract following radiation exposure. In this study, we addressed the ability of MSC to support the structural regeneration of the small intestine after abdominal irradiation.

We isolated MSC from human bone marrow and human mesenchymal stem cells (hMSC) were transplanted into immunotolerent NOD/SCID mice with a dose of 5.106 cells via the systemic route. Using a model of radiation-induced intestinal injury, we studied the link between damage, hMSC engraftment and the capacity of hMSC to sustain structural recovery. Tissue injury was assessed by histological analysis. hMSC engraftment in tissues was quantified by PCR assay.

Following abdominal irradiation, the histological analysis of small intestinal structure confirms the presence of partial and transient (three days) mucosal atrophy. PCR analysis evidences a low but significant hMSC implantation in small intestine (0.17%) but also at all the sites of local irradiation (kidney, stomach and spleen). Finally, in presence of hMSC, the small intestinal structure is already recovered at three days after abdominal radiation exposure. We show a structural recovery accompanied by an increase of small intestinal villus height, three and fifteen days following abdominal radiation exposure.

In this study, we show that radiation-induced small intestinal injury may play a role in the recruitment of MSC for the improvement of tissue recovery. This work supports, the use of MSC infusion to repair damaged GI tract in patients subjected to radiotherapy. MSC therapy to avoid extended intestinal crypt sterilization is a promising approach to diminish healthy tissue alterations during the course of pelvic radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.7. References

  • Allgood J.W., Langberg C.W., Sung C.C., and Hauer-Jensen M., 1996, Timing of concomitant boost irradiation affects incidence and severity of intestinal complications, Int. J. Radiat. Oncology boil. Phys. 34(2):381–387.

    Article  Google Scholar 

  • Anjos-Afonso F., Siapati E.K., and Bonnet D., 2004, In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions, J. Cell Sci. 117:5655–5664.

    Article  Google Scholar 

  • Bensidhoum M., Chapel A., Francois S., Demarquay C., Mazurier C., Fouillard L., Bouchet S., Bertho JM., Gourmelon P., Aigueperse J., Charbord P., Gorin N.C., Thierry D., and Lopez M., 2004, Homing of in vitro expanded Stro-1 or stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment, Blood 103(9): 3313–3319.

    Article  Google Scholar 

  • Bisht K.S., Prabhu S., and Devi P.U., 2000, Modification of radiation induced damage in mouse intestine by WR-2721. Indian J. Exp. Biol. 38(7):669–674.

    Google Scholar 

  • Brittan M., Hunt T., Jeffery R., Poulsom R., Forbes S.J., Hodivala-Dilke K., Goldman J., Alison M.R., and Wright N.A., 2002, Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon, Gut 50:752–757.

    Article  Google Scholar 

  • Brittan M., Chance V., Elia G., Poulsom R;, Alison M.R., MacDonald T.T., Wright N.A., 2005, A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and Myofibroblasts, Gastroenterology 128:1984–1995.

    Article  Google Scholar 

  • Chapel A., Bertho J.M., Bensidhoum M., Fouillard L., Young R.G., Frick J., Demarquay C., Cuvelier F., Mathieu E., Trompier F., Dudoignon N., Germain C., Mazurier C., Aigueperse J., Borneman J., Gorin N.C., Gourmelon P., and Thierry D., 2003, Mesenchymal stem cells home to injured tissues when co-infused with hematopoeitic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med. 5(12):1028–1038.

    Article  Google Scholar 

  • Chopp M., Zhang X.H., Li Y., Wang L., Chen J., Lu D., Lu M., and Rosenblum M., 2000, Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation, Neuroreport 11(13):3001–3005.

    Article  Google Scholar 

  • Deans R.J., and Moseley A.B., 2000, Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28(8):875–884.

    Article  Google Scholar 

  • Deng W., Han Q., Liao L., Li C., Ge W., Zhao Z., You S., Deng H., Murad F., and Zhao R.C.H., 2005, Engrafted bone marrow-derived FlK-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng. 11(1/2): 110–119.

    Article  Google Scholar 

  • Denham J.W., and Hauer-Jensen M., 2002, The radiotherapeuthic injury-a complex wound, Radiother. Oncol. 63:129–145.

    Article  Google Scholar 

  • Devine S.M., Cobbs C., Jennings M., Bartholomew A., and Hoffman R;, 2003, Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates, Blood 101(8): 2999–3001.

    Article  Google Scholar 

  • Direkze N.C., Forbes S.J., Brittan M., Hunt T., Jeffery R., Preston S.L., Poulsom R., Hodivala-Dilke K., Alison M.R., and Wright N.A., 2003, Multiple organ engraftment by bone marrow-derived myofibroblasts and fibroblasts in bone marrow-transplanted mic,. Stem cells 21:514–520.

    Article  Google Scholar 

  • Dublineau I., Lebrun F., Grison S., and Griffiths N.M., 2004, Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation, Can. J. Physiol. Pharmacol. 82(2):84–93.

    Article  Google Scholar 

  • Ferrari G., Cusella-De Angelis G., Coletta M., Paolucci E., Sornaiuolo A., Cossu G., and Mavilio F., 1998, Muscle regeneration by bone marrow-derived myogenic progenitors, Science 279(5356):1528–1530.

    Article  Google Scholar 

  • Francois A., Milliat F., and Vozenin-Brotons M.C., 2005, Bowel injury associated with pelvic radiotherapy, Radiat. Phys. Chemistry 72:399–407.

    Article  Google Scholar 

  • Gregory C.A., Prockop D.J., and Spees J.L., 2005, Non-hemotopoietic bone marrow stem cells: Molecular control of expansion and differentiation, Exp. Cell Res. 306:330–335.

    Article  Google Scholar 

  • Grimm P.C., Nickerson P., Jeffery J., Savani R.C., Gough J., McKenna R.M., Stern E., and Rush D.N., 2001 Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renalallograft rejection, N. Engl. J. Med. 345(2):93–97.

    Article  Google Scholar 

  • Heid C.A., Stevens J., Livak K.J., and Williams P.M., 1996, Real time quantitative PCR, Genome Res. 6(10): 986–994.

    Article  Google Scholar 

  • Herrera M.B., Bussolati B., Bruno S., Fonsato V., Romanazzi G.M., and Camussi G., 2004, Mesenchymal stem cells contribute to renal repair of acute tubular epithelial injury, Int. J. Mol. Med. 14:1035–1041.

    Google Scholar 

  • Hori Y., Nakamura T., Kimura D., Kaino K., Kurokawa Y., Satomi S., and Shimizu Y., 2002, Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding, J. Surg. Res. 102:156–160

    Article  Google Scholar 

  • Horwitz E.M., Prockop D.J., Gordon P.L., Koo W.W., Fitzpatrick L.A., Neel M.D., McCarville M.E., Orchard P.J., Pyeritz R.E., and Brenner M.K., 2001, Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231.

    Article  Google Scholar 

  • Kinnaird T., Stabile E., Burnett M.S., Shou M., Lee C.W., Barr S., Fuchs S., and Epstein S.E., 2004, Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms, Circulation 109(12):1543–1549.

    Article  Google Scholar 

  • Le Blanc K., Rasmusson I., Sundberg B., Götherström C., Hassan M., Uzunel M., and Ringden O., 2004 Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells, Lancet 363:1439–1441

    Article  Google Scholar 

  • Leedham S.J., Brittan M., McDonald A.S.C., and Wright N.A., 2005, Intestinal stem cells, J. Cell Mol. Med. 9(1):11–24.

    Article  Google Scholar 

  • Lesher S., Cooper J., Hagemann R., and Lesher J., 1975, Proliferative patterns in the mouse jejunal epithelium after fractionated abdominal X-irradiation, Curr. Top. Radiat. Res. Q. 10(3):229–261.

    Google Scholar 

  • Lüttichau I.V., Notohamiprodjo M., Wechselberger A., Peters C., Henger A., Seliger C., Djafarzadeh R., Huss R., and Nelson P.J., 2005, Human Adult CD34(-) progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5 and CCR10 but not CXCR4, Stem Cells Dev. 14:329–336.

    Article  Google Scholar 

  • Mangi A.A., Noiseux N., Kong D., He H., Rezvani M., Ingwall J.S., and Dzau V.J., 2003, Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infracted hearts, Nat. Med. 9:1195–1201.

    Article  Google Scholar 

  • Marshman E., Booth C., Potten C.S., 2002, The intestinal epithelial stem cell, Bioessays 24:91–98.

    Article  Google Scholar 

  • Matsumoto T., Okamoto R., Yajima T., Mori T., Okamato S., Ikeda Y., Mukai M., Yamazaki M., Oshima S., Tsuchiya K., Nakamura T., Kanai T., Okano H., Inazawa J., Hibi J., and Watanabe M., 2005, Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine, Gastroenterology 128:1851–1867.

    Article  Google Scholar 

  • Okamoto R., Yajima T., Yamazaki M., Kanai T., Mukai M., Okamoto S., Ikeda Y., Hibi T., Inazawa J., and Watanabe M., 2002, Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract, Nat. Med. 8:1011–1017.

    Article  Google Scholar 

  • Okamoto R., and Watanabe M., 2003, Prospects for regeneration of gastrointestinal epithelia using bone marrow cells, Trends Mol. Med. 9:286–290.

    Article  Google Scholar 

  • Ortiz L.A, Gambelli F., McBride C., Gaupp D., Maddoo M., Kaminski N., and Phinney D.G., 2003, Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. U.S.A. 100:8407–8411.

    Article  Google Scholar 

  • Petersen B.E., Bowen W.C., Patrene K.D., Mars W.M., Sullivan A.K., Murase N., Boggs S.S., Greenberger J.S., and Goff J.P., 1999, Bone marrow as a potential source of hepatic oval cells, Science 284(5417):1168–1170.

    Article  Google Scholar 

  • Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., and Marshak D.R., 1999, Multilineage potential of adult human mesenchymal Stem Cells, Science 284(5411):143–147.

    Article  Google Scholar 

  • Pittenger M.F., Martin B.J., 2004, Mesenchymal stem cells and their potential as cardiac therapeutic, Circ. Res. 95(1):9–20.

    Article  Google Scholar 

  • Potten C.S., Booth C, Tudor G.L., Booth D., Brady G., Hurley P., Ashton G., Clarke R., Sakakibara S., Okano H., 2003, Identification of a putative intestinal stem cell and early lineage marker; musashi-1, Differentiation 71:28–41.

    Article  Google Scholar 

  • Potten C.S., 2004, Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine, Radiat. Res. 161:123–136.

    Article  Google Scholar 

  • Santa Maria L., Rojas C.V., and Minguell J.J., 2004, Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone marrow-derived mesenchymal stem cells, Exp. Cell Res. 300(2):418–426.

    Article  Google Scholar 

  • Shake J.G., Gruber P.J., Baumgartner W.A., Senechal G., Meyers J., Redmond J.M., Pittenger M.F., and Martin B.J., 2002, Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects, Ann. Thorac. Surg. 73(6):1919–1925; discussion 1926.

    Article  Google Scholar 

  • Tang Y.L., Zhao Q., Zhang Y.C., Cheng L., Liu M., Shi J., Yang Y.Z;, Pan C., Ge J., and Phillips M.I., 2004, Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium, Regul. Pept. 117:3–10.

    Article  Google Scholar 

  • Van der Meeren A., Mouthon M.A., Vandamme A., Squiban C., and Aigueperse J., 2004, Combinations of cytokines promote survival of mice and limit acute radiation damage in concert with amelioration of vascular damage, Radiat. Res. 161(5):549–559.

    Article  Google Scholar 

  • Van der Meeren A., Monti P., Vandamme M., Squiban C., Wysocki J., and Griffiths N., 2005, Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice, Radiat. Res. 163:144–152.

    Article  Google Scholar 

  • Wang X., Montini E., Al-Dhalimy M., Lagasse E., Finegold M., and Grompe M., 2002, Kinetics of liver repopulation after bone marrow transplantation, Am. J. Pathol. 161(2):349–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sémont, A. et al. (2006). Mesenchymal Stem Cells Increase Self-Renewal of Small Intestinal Epithelium and Accelerate Structural Recovery after Radiation Injury. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics