Skip to main content

From Molecules to Matrix: Construction and Evaluation of Molecularly Defined Bioscaffolds

  • Conference paper
Tissue Engineering

Abstract

In this chapter, we describe the fundamental aspects of the preparation of molecularly-defined scaffolds for soft tissue engineering, including the tissue response to the scaffolds after implantation. In particular, scaffolds prepared from insoluble type I collagen fibres, soluble type II collagen fibres, insoluble elastin fibres, glycosamino— glycans (GAGs) and growth factors are discussed. The general strategy is to prepare tailor-made “smart” biomaterials which will create a specific microenvironment thus enabling cells to generate new tissues. As an initial step, all biomolecules used were purified to homogeneity. Next, porous scaffolds were prepared using freezing and lyophilisation, and these scaffolds were crosslinked using carbodiimides. Crosslinking resulted in mechanically stronger scaffolds and allowed the covalent incorporation of GAGs. Scaffold characteristics were controlled to prepare tailor-made scaffolds by varying e.g. collagen to elastin ratio, freezing rate, degree of crosslinking, and GAGs attachment. The tissue response to scaffolds was evaluated following subcutaneous implantations in rats. Crosslinked scaffolds maintained their integrity and supported the formation of new extracellular matrix. Collagen-GAG scaffolds loaded with basic fibroblast growth factor significantly enhanced neovascularisation and tissue remodelling. Animal studies of two potential applications of these scaffolds were discussed in more detail, i.e. for bladder and cartilage regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

19.9. References

  1. R.S. Langer and J.P. Vacanti. Tissue engineering: the challenges ahead. Sci Am 280(4), 86–89 (1999).

    Article  Google Scholar 

  2. R. Langer and J.P. Vacanti. Tissue engineering. Science 260(5110), 920–926 (1993).

    Article  Google Scholar 

  3. L.G. Griffith and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295(5557), 1009–1014 (2002).

    Article  Google Scholar 

  4. M.P. Lutolf and J.A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1), 47–55 (2005).

    Article  Google Scholar 

  5. W.F. Daamen, H.T. van Moerkerk, T. Hafmans, L. Buttafoco, A.A. Poot, J.H. Veerkamp and T.H. van Kuppevelt. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials 24(22), 4001–4009 (2003).

    Article  Google Scholar 

  6. J.A. Hubbell. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5), 551–558 (2003).

    Article  Google Scholar 

  7. G.J. Laurent. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252(1 Pt 1), C1–9 (1987).

    Google Scholar 

  8. D.J. Prockop and K.I. Kivirikko. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64 403–434 (1995).

    Article  Google Scholar 

  9. P.H. Byers. Inherited disorders of collagen gene structure and expression. Am J Med Genet 34(1), 72–80 (1989).

    Article  Google Scholar 

  10. F.J. O’Brien, B.A. Harley, I.V. Yannas and L.J. Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4), 433–441 (2005).

    Article  Google Scholar 

  11. Y.S. Pek, M. Spector, I.V. Yannas and L.J. Gibson. Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase. Biomaterials 25(3), 473–482 (2004).

    Article  Google Scholar 

  12. G. Marmieri, M. Pettenati, C. Cassinelli and M. Morra. Evaluation of slipperiness of catheter surfaces. J Biomed Mater Res 33(1), 29–33 (1996).

    Article  Google Scholar 

  13. J.A. Buckwalter and H.J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47 477–486 (1998).

    Google Scholar 

  14. C.M. Kielty, M.J. Sherratt and C.A. Shuttleworth. Elastic fibres. J Cell Sci 115 (Pt 14), 2817–2828 (2002).

    Google Scholar 

  15. J.D. Berglund, R.M. Nerem and A. Sambanis. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng 10(9–10), 1526–1535 (2004).

    Google Scholar 

  16. T. Chandy, G.H. Rao, R.F. Wilson and G.S. Das. The development of porous alginate/elastin/PEG composite matrix for cardiovascular engineering. J Biomater Appl 17(4), 287–301 (2003).

    Article  Google Scholar 

  17. M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss and P.I. Lelkes. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26(30), 5999–6008 (2005).

    Article  Google Scholar 

  18. C. Kielty, T. Wess, L. Haston, J. Ashworth, M. Sherratt and C. Shuttleworth. Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. Journal of Muscle Research and Cell Motility 23(5–6), 581–596 (2002).

    Article  Google Scholar 

  19. R. Raman, V. Sasisekharan and R. Sasisekharan. Structural insights into biological roles of proteinglycosaminoglycan interactions. Chem Biol 12(3), 267–277 (2005).

    Article  Google Scholar 

  20. D.R. Coombe and W.C. Kett. Heparan sulfate-protein interactions: therapeutic potential through structure-function insights. Cell Mol Life Sci 62(4), 410–424 (2005).

    Article  Google Scholar 

  21. S. Valla, J. Li, H. Ertesvag, T. Barbeyron and U. Lindahl. Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. Biochimie 83(8), 819–830 (2001).

    Article  Google Scholar 

  22. M.E. Nimni. Polypeptide growth factors: targeted delivery systems. Biomaterials 18(18), 1201–1225 (1997).

    Article  Google Scholar 

  23. D.G. Fernig and J.T. Gallagher. Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 5(4), 353–377 (1994).

    Article  Google Scholar 

  24. J.E. Babensee, L.V. McIntire and A.G. Mikos. Growth factor delivery for tissue engineering. Pharm Res 17(5), 497–504 (2000).

    Article  Google Scholar 

  25. M. Salmivirta, K. Lidholt and U. Lindahl. Heparan sulfate: a piece of information. Faseb J 10(11), 1270–1279 (1996).

    Google Scholar 

  26. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld and S. Cohen. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65(4), 489–497 (2003).

    Article  Google Scholar 

  27. T. Asahara, C. Bauters, L.P. Zheng, S. Takeshita, S. Bunting, N. Ferrara, J.F. Symes and J.M. Isner. Synergistic Effect of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor on Angiogenesis In Vivo. Circulation 92(9), 365–371 (1995).

    Google Scholar 

  28. J.D. Zhang, L.S. Cousens, P.J. Barr and S.R. Sprang. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta. Proc Natl Acad Sci U S A 88(8), 3446–3450 (1991).

    Article  Google Scholar 

  29. N. Ferrara. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280(6), C1358–1366 (2001).

    Google Scholar 

  30. J.S. Pieper, A. Oosterhof, P.J. Dijkstra, J.H. Veerkamp and T.H. van Kuppevelt. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials 20(9), 847–858 (1999).

    Article  Google Scholar 

  31. J.S. Pieper, P.M. van der Kraan, T. Hafmans, J. Kamp, P. Buma, J.L. van Susante, W.B. van den Berg, J.H. Veerkamp and T.H. van Kuppevelt. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 23(15), 3183–3192 (2002).

    Article  Google Scholar 

  32. W.F. Daamen. Isolation of intact elastin fibres devoid of microfibrils. Tissue Eng 11(7/8), 1168–1176 (2005).

    Article  Google Scholar 

  33. W.F. Daamen, T. Hafmans, J.H. Veerkamp and T.H. Van Kuppevelt. Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22(14), 1997–2005 (2001).

    Article  Google Scholar 

  34. W.F. Daamen, S.T. Nillesen, T. Hafmans, J.H. Veerkamp, M.J. van Luyn and T.H. van Kuppevelt. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials 26(1), 81–92 (2005).

    Article  Google Scholar 

  35. J.S. Pieper, T. Hafmans, J.H. Veerkamp and T.H. van Kuppevelt. Development of tailor-made collagenglycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 21(6), 581–593 (2000).

    Article  Google Scholar 

  36. C.H. van de Lest, E.M. Versteeg, J.H. Veerkamp and T.H. van Kuppevelt. Quantification and characterization of glycosaminoglycans at the nanogram level by a combined azure A-silver staining in agarose gels. Anal Biochem 221(2), 356–361 (1994).

    Article  Google Scholar 

  37. C.H. van de Lest, E.M. Versteeg, J.H. Veerkamp and T.H. van Kuppevelt. A spectrophotometric method for the determination of heparan sulfate. Biochim Biophys Acta 1201(2), 305–311 (1994).

    Google Scholar 

  38. J.S. Pieper, T. Hafmans, P.B. van Wachem, M.J. van Luyn, L.A. Brouwer, J.H. Veerkamp and T.H. van Kuppevelt. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res 62(2), 185–194 (2002).

    Article  Google Scholar 

  39. F.J. O’Brien, B.A. Harley, I.V. Yannas and L. Gibson. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25(6), 1077–1086 (2004).

    Article  Google Scholar 

  40. L.H.H. Olde Damink, P.J. Dijkstra, M.J.A. van Luyn, P.B. van Wachem, P. Nieuwenhuis and J. Feijen. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17(8), 765–773 (1996).

    Article  Google Scholar 

  41. I.V. Yannas and J.F. Burke. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14(1), 65–81 (1980).

    Article  Google Scholar 

  42. T.H. van Kuppevelt, M.A. Dennissen, W.J. van Venrooij, R.M. Hoet and J.H. Veerkamp. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273(21), 12960–12966 (1998).

    Article  Google Scholar 

  43. J.S. Pieper, P.B. van Wachem, M.J.A. van Luyn, L.A. Brouwer, T. Hafmans, J.H. Veerkamp and T.H. van Kuppevelt. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterials 21(16), 1689–1699 (2000).

    Article  Google Scholar 

  44. J.E. Nuininga, H. van Moerkerk, A. Hanssen, C.A. Hulsbergen, J. Oosterwijk-Wakka, E. Oosterwijk, R.P. de Gier, J.A. Schalken, T.H. van Kuppevelt and W.F. Feitz. A rabbit model to tissue engineer the bladder. Biomaterials 25(9), 1657–1661 (2004).

    Article  Google Scholar 

  45. F. Oberpenning, J. Meng, J.J. Yoo and A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. 17(2), 149–155 (1999).

    Google Scholar 

  46. S.V. Lima, L.A. Araujo, F.O. Vilar, C.L. Kummer and E.C. Lima. Nonsecretory sigmoid cystoplasty: experimental and clinical results. J Urol 153(5), 1651–1654 (1995).

    Article  Google Scholar 

  47. N. Arikan, K. Turkolmez, M. Budak and O. Gogus. Outcome of augmentation sigmoidocystoplasty in children with neurogenic bladder. Urol Int 64(2), 82–85 (2000).

    Article  Google Scholar 

  48. S. Herschorn and R.J. Hewitt. Patient perspective of long-term outcome of augmentation cystoplasty for neurogenic bladder. Urology 52(4), 672–678 (1998).

    Article  Google Scholar 

  49. A. Atala. Regenerative medicine and urology. BJU Int 92Suppl 1 58–67 (2003).

    Article  Google Scholar 

  50. P.A. Merguerian, P.P. Reddy, D.J. Barrieras, G.J. Wilson, K. Woodhouse, D.J. Bagli, G.A. McLorie and A.E. Khoury. Acellular bladder matrix allografts in the regeneration of functional bladders: evaluation of large-segment (> 24 cm) substitution in a porcine model. BJU Int 85(7), 894–898 (2000).

    Article  Google Scholar 

  51. M. Probst, R. Dahiya, S. Carrier and E.A. Tanagho. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 79(4), 505–515 (1997).

    Google Scholar 

  52. B.P. Kropp, B.L. Eppley, C.D. Prevel, M.K. Rippy, R.C. Harruff, S.F. Badylak, M.C. Adams, R.C. Rink and M.A. Keating. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 46(3), 396–400 (1995).

    Article  Google Scholar 

  53. B.P. Kropp. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol 16(4), 262–267 (1998).

    Article  Google Scholar 

  54. P.P. Reddy, D.J. Barrieras, G. Wilson, D.J. Bagli, G.A. McLorie, A.E. Khoury and P.A. Merguerian. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol 164(3 Pt 2), 936–941 (2000).

    Google Scholar 

  55. P. Buma, J.S. Pieper, T. van Tienen, J.L. van Susante, P.M. van der Kraan, J.H. Veerkamp, W.B. van den Berg, R.P. Veth and T.H. van Kuppevelt. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects—a study in rabbits. Biomaterials 24(19), 3255–3263 (2003).

    Article  Google Scholar 

  56. P.M.D. Nastaran Mahmoudifar. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnology and Bioengineering 91(3), 338–355 (2005).

    Article  Google Scholar 

  57. R. Westreich, M. Kaufman, P. Gannon and W. Lawson. Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope 114(12), 2154–2160 (2004).

    Article  Google Scholar 

  58. S.W. Kang, O. Jeon and B.S. Kim. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng 11(3–4), 438–447 (2005).

    Article  Google Scholar 

  59. J.S. Dounchis, W.C. Bae, A.C. Chen, R.L. Sah, R.D. Coutts and D. Amiel. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377), 248–264 (2000).

    Article  Google Scholar 

  60. S.B. Cohen, C.M. Meirisch, H.A. Wilson and D.R. Diduch. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials 24(15), 2653–2660 (2003).

    Article  Google Scholar 

  61. H.A. Breinan, S.D. Martin, H.P. Hsu and M. Spector. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18(5), 781–789 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Geutjes, P.J., Daamen, W.F., Buma, P., Feitz, W.F., Faraj, K.A., van Kuppevelt, T.H. (2006). From Molecules to Matrix: Construction and Evaluation of Molecularly Defined Bioscaffolds. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics