Skip to main content

Non-Invasive Monitoring of Tissue-Engineered Pancreatic Constructs by NMR Techniques

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

Tissue engineering is an expanding field that combines the principles of engineering and the life sciences towards the fundamental understanding of structure/function relationships in normal and pathological mammalian tissues, and the development of biological substitutes to restore, maintain, or improve function (1). There are several critical issues that hamper the development of tissue engineered constructs. These include, but may not be limited to: (i) the source and function of cells employed within the constructs; (ii) the biomaterials used to build the constructs; (iii) the ability to scale up production to a medically relevant scale; (iv) the immune acceptance of a construct; (v) the preservation and subsequent off-the-shelf availability of the construct, and (vi) the ability to monitor the function and integrity of the construct in vivo. In this review we will focus on the issue of non-invasive monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

18.6. References

  1. Mason, C., Markusen, J.F., Town, M.A., Dunnill, P. & Wang, R.K. The potential of optical coherence tomography in the engineering of living tissue. Physics Medicine Biology 49, 1097–1115 (2004).

    Article  Google Scholar 

  2. Kirkpatrick, S.J., Hinds, M.T. & Duncan, D.D. Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold. Tissue Engineering 9, 645–656 (2003).

    Article  Google Scholar 

  3. Blum, J.S. et al. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials 25, 5809–5819 (2004).

    Article  Google Scholar 

  4. Mertsching, H., Walles, T., Hofmann, M., Schanz, J. & Knapp, W.H. Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials In Press, Corrected Proof(2005).

    Google Scholar 

  5. Guldberg, R.E. et al. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag 22, 77–83 (2003).

    Article  Google Scholar 

  6. Jones, A.C. et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25, 4947–4954 (2004).

    Article  Google Scholar 

  7. Constantinidis, I. & Sambanis, A. Non-invasive monitoring of tissue engineered constructs by nuclear magnetic resonance methodologies. Tissue Engineering 4, 9–17 (1998).

    Article  Google Scholar 

  8. Hartman, E.H. et al. In Vivo Magnetic Resonance Imaging Explorative Study of Ectopic Bone Formation in the Rat. Tissue Engineering 8, 1029–1036 (2002).

    Article  Google Scholar 

  9. Burg, K.J. et al. Application of magnetic resonance microscopy to tissue engineering: a polylactide model. J Biomed Mater Res 61, 380–390 (2002).

    Article  Google Scholar 

  10. Neves, A.A., Medcalf, N. & Brindle, K. Functional assessment of tissue-engineered meniscal cartilage by magnetic resonance imaging and spectroscopy. Tissue Engineering 9, 51–62 (2003).

    Article  Google Scholar 

  11. Stabler, C.L., Long, R.C., Jr., Constantinidis, I. & Sambanis, A. In vivo noninvasive monitoring of viable cell number in tissue engineered constructs using 1H NMR spectroscopy. Cell Transplantation 14, 139–149 (2005).

    Google Scholar 

  12. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  Google Scholar 

  13. Hadjantonakis, A.-K., Dickinson, M.E., Fraser, S.E. & Papaioannou, V.E. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nature Genetics 4, 613–625 (2003).

    Google Scholar 

  14. Greer III, L.F. & Szalay, A.A. Imaging of light emission from the expression of lucoferases in living cells and organisms: a review. Luminescence 17, 43–74 (2002).

    Article  Google Scholar 

  15. Gee, K.R., Zhou, Z.-L., Qian, W.-J. & Kennedy, R. Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. Journal of the Americal Chemical Society Communications 124, 776–778 (2002).

    Article  Google Scholar 

  16. Piston, D.W. Imaging living cells by two-photon excitation microscopy. Trends in Cellular Biology 9, 66–69 (1999).

    Article  Google Scholar 

  17. Lu, Y. et al. Bioluminescent monitoring of islet graft survival after transplantation. Molecular Therapy 9, 428–435 (2004).

    Article  Google Scholar 

  18. Fowler, M. et al. Assessment of Pancreatic Islet Mass after Islet Transplantation Using In Vivo Bioluminescence Imaging. Transplantation 79, 768–776 (2005).

    Article  Google Scholar 

  19. Tai, Y.C. et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Physics in Medicine and Biology 48, 1519–1537 (2003).

    Article  Google Scholar 

  20. Purcell, E.M., Torrey, H.C. & Pound, R.V. Resonance absorption by nuclear magnetic moments in a solid. Physical Review 69, 37–38 (1946).

    Article  Google Scholar 

  21. Bloch, F., Hansen, W.W. & M., P. Nuclear induction. Physical Review 69, 127 (1946).

    Article  Google Scholar 

  22. Lauterbur, P.C. Image information by induced local interactions. Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Article  Google Scholar 

  23. Mansfied, P. & Grannell, P.K. NMR “difraction” in solids? Journal of Physics C: solid state physics 6, L422–L426 (1973).

    Article  Google Scholar 

  24. Aguayo, J.B., Blackband, S.J., Schoeniger, J., Mattingly, M.A. & Hintermann, M. Nuclear magnetic resonance imaging of a single cell. Nature 322, 190–191 (1986).

    Article  Google Scholar 

  25. Norris, D.G. High field human imaging. Journal of Magnetic Resonancne Imaging 18, 519–529 (2003).

    Article  Google Scholar 

  26. Szwergold, B.S. NMR spectroscopy of cells. Annual Review Physiology 54, 775–798 (1992).

    Article  Google Scholar 

  27. Neeman, M., Rushkin, E., Kadouri, A. & Degani, H. Adaptation of culture methods for NMR studies of anchorage-dependent cells. Magn. Reson. Med. 7, 236–242 (1988).

    Article  Google Scholar 

  28. Lyon, R.C., Faustino, P.J. & Cohen, J.S. A perfusion technique for 13C NMR studies of the metabolism of 13C-labeled substances by mammalian cells. Magn. Reson. Med. 3, 663–672 (1986).

    Article  Google Scholar 

  29. Narayan, K.S., Moress, E.A., Chatham, J.C. & Barker, P.B. 31P NMR of mammalian cells encapsulated in alginate gels utilizing a new phosphate-free perfusion medium. NMR Biomed. 3, 23–26 (1990).

    Article  Google Scholar 

  30. Gamcsik, M.P., Forder, J.R., Millis, K.K. & McGovern, K.A. A versatile oxygenator and perfusion system for magnetic resonance studies. Biotechn. Bioeng. 49, 348–354 (1996).

    Article  Google Scholar 

  31. Sillerud, L.O., Freyer, J.P., Neeman, M. & Mattingly, M.A. Proton NMR microscopy of multicellular tumor spheroid morphology. Magn. Reson. Med. 16, 380–389 (1990).

    Article  Google Scholar 

  32. Gillies, R.J. et al. Design and application of NMR-compatible bioreactor circuits for extended perfusion of high-density mammalian cell cultures. NMR Biomed. 6, 95–104 (1993).

    Article  Google Scholar 

  33. Constantinidis, I. & Sambanis, A. Towards the development of artificial endocrine tissues: 31P NMR spectroscopic studies of immunoisolated, insulin-secreting AtT-20 cells. Biotechnology and Bioengineering 47, 431–443 (1995).

    Article  Google Scholar 

  34. Koretsky, A.P. & Williams, D.S. Application of localized in vivo NMR to whole organ physiology in the animal. Annu. Rev. Physiol. 54, 799–826 (1992).

    Article  Google Scholar 

  35. Negendank, W. Studies of human tumors by MRS: a review. NMR Biomed. 5, 303–324 (1992).

    Google Scholar 

  36. Papas, K.K., Long Jr, R.C., Constantinidis, I. & Sambanis, A. Role of ATP and Pi on the mechanism of insulin secretion in the mouse insulinoma βTC3 cell line. Biochemical Journal 326, 807–814 (1997).

    Google Scholar 

  37. Papas, K.K., Long Jr, R.C., Constantinidis, I. & Sambanis, A. Development of a bioartificial pancreas: I. Long-term propagation and basal and induced secretion from entrapped βTC3 cell cultures. Biotechnology and Bioengineering 66, 219–230 (1999).

    Article  Google Scholar 

  38. Papas, K.K., Long Jr, R.C., Constantinidis, I. & Sambanis, A. Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped βTC3 cell cultures. Biotechnology and Bioengineering 66, 231–237 (1999).

    Article  Google Scholar 

  39. Papas, K.K., Long Jr, R.C., Sambanis, A. & Constantinidis, I. Effects of short-term hypoxia on a bioartificial pancreatic construct. Cell Transplantation 9, 415–422 (2000).

    Google Scholar 

  40. Long, R.C., Jr., Papas, K.K., Sambanis, A. & Constantinidis, I. In vitro monitoring of total choline levels in a bioartificial pancreas: 1H NMR spectroscopic studies of the effects of oxygen level. Journal of Magnetic Resonance 146, 49–57 (2000).

    Article  Google Scholar 

  41. Stabler, C.L., Long, R.C., Jr., Constantinidis, I. & Sambanis, A. Noninvasive measurement of viable cell number in tissue engineered constructs in vitro using 1H NMR spectroscopy. Tissue Engineering 11, 404–414 (2005).

    Article  Google Scholar 

  42. Gimi, B. et al. NMR Spiral Surface Microcoils: Applications. Concepts in Magnetic Resonance Part B (Magnetic Resonance Engineering) 18, 1–8 (2003).

    Article  Google Scholar 

  43. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).

    Article  Google Scholar 

  44. Strand, B.L., Yrr, A.M., Espevik, T. & Skjak-Braek, G. Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal lazer scanning microscopy. Biotechnology and Bioengineering 82, 386–394 (2003).

    Article  Google Scholar 

  45. Constantinidis, I., Rask, I., Long Jr, R.C. & Sambanis, A. Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells. Biomaterials 20, 2019–2027 (1999).

    Article  Google Scholar 

  46. Stabler, C., Wilks, K., Sambanis, A. & Constantinidis, I. The effects of alginate composition on encapsulated βTC3 cells. Biomaterials 22, 1301–1310 (2001).

    Article  Google Scholar 

  47. Simpson, N.E., Stabler, C.L., Sambanis, A. & Constantinidis, I. The role of the CaCl2-guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials 25, 2603–2610 (2004).

    Article  Google Scholar 

  48. Malloy, C.R., Sherry, A.D. & Jeffrey, F.M.H. Evaluation of carbon flux and substrate selection through alternative pathways involving the citric acid cycle of the heart by 13C-NMR spectroscopy. Journal Biological Chemistry 263, 6964–6971 (1988).

    Google Scholar 

  49. Sherry, A.D., Jeffrey, F.M.H. & Malloy, C.R. Analytical solutions for 13C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metabolic Engineering 6, 12–24 (2004).

    Article  Google Scholar 

  50. Constantinidis, I., Mukundan, N.E., Gamcsik, M. & Sambanis, A. Towards the development of a bioartificial pancreas: A 13C NMR study on the effect of alginate/poly-L-lysine/alginate entrapment on glucose metabolism by βTC3 mouse insulinoma cells. Cellular Molecular Biology 43, 721–729 (1997).

    Google Scholar 

  51. Hicks, B.A. et al. Transplantation of β cells from transgenic mice into nude athymic diabetic rats restores glucose regulation. Diabetes Res. Clin. Pract. 14, 157–164 (1991).

    Article  Google Scholar 

  52. Lanza, R.P. et al. Transplantation of islets using microencapsulation: studies in diabetic rodents and dogs. J. Mol. Med. 77, 206–210 (1999).

    Article  Google Scholar 

  53. Constantinidis, I., Stabler, C.L., Long, R.J. & Sambanis, A. Noninvasive monitoring of a retrievable bioartificial pancreas in vivo. Annals New York Academy Sciences 961, 298–301 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Constantinidis, I., Simpson, N.E., Grant, S.C., Blackband, S.J., Long, R.C., Sambanis, A. (2006). Non-Invasive Monitoring of Tissue-Engineered Pancreatic Constructs by NMR Techniques. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics