Skip to main content

Modulation of Cell Differentiation in Bone Tissue Engineering Constructs Cultured in a Bioreactor

  • Conference paper
Book cover Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

There is a significant need for therapies to enhance healing in large skeletal defects because there exist over 1 million cases each year of patients requiring bone graft procedures to correct such defects1. These defects can arise for a variety of reasons including trauma, congenital deformity, and tumor resection and thus exist in a wide range of shapes, sizes, and functional locations. The most successful of current treatments for large bone defects is autologous bone graft. This therapy is attractive because there is no risk of immune rejection to the transplanted tissue; however, there are two major drawbacks associated with this procedure. First, there is a limited supply of donor bone, which is harvested primarily from the trabecular bone of the iliac crest, or from a whole rib or fibula. Thus, there may not be enough donor tissue for proper shape reconstruction of the defect that can also support the necessary mechanical load during healing.2 Second, autologous bone graft therapies are associated with a risk of morbidity at the donor site which was healthy to begin with. Due to these issues, there is a need for alternative strategies to bone healing that allow exact shape reconstruction, are mechanically strong, and are biocompatible in both the short and long term. To this end, bone tissue engineering has evolved as a practical method of regenerating large bony defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.12. References

  1. R. Langer and J. P. Vacanti, Tissue Engineering, Science 260(5110), 920–926 (1993).

    Article  Google Scholar 

  2. M. J. Yaszemski, J. B. Oldham, L. Lu and B. L. Currier, Clinical Needs for Bone Tissue-Engineering Technology, in: Bone Engineering, edited by J. E. Davies (em squared incorporated, Toronto, 2000), pp. 541–546.

    Google Scholar 

  3. J. A. Buckwalter, M. J. Glimcher, R. R. Cooper and R. Recker, Bone Biology, J. Bone Joint Surg. Am. 77-A(8), 1256–1289 (1995).

    Google Scholar 

  4. V. I. Sikavitsas, J. S. Temenoff and A. G. Mikos, Biomaterials and Bone Mechanotransduction, Biomaterials 22(19), 2581–2593 (2001).

    Article  Google Scholar 

  5. J. E. Aubin and A. Herbertson, Osteoblast lineage in experimental animals, in: Marrow Stromal Cell Culture, edited by J. N. Beresford and M. Owen (Cambridge University Press, Cambridge, 1998), pp. 88–110.

    Google Scholar 

  6. J. E. Aubin, The Osteoblast Lineage, in: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz and G. A. Rodan (Academic Press, San Diego, 1996), pp. 51–67.

    Google Scholar 

  7. J. E. Aubin, Osteogenic Cell Differentiation, in: Bone Engineering, edited by J. E. Davies (em squared incorporated, Toronto, 2000), pp. 19–29.

    Google Scholar 

  8. C. Maniatopolous, J. Sodek and A. H. Melcher, Bone formation in in vitro by stromal cells obtained from bone marrow of young adult rats, Cell Tissue Research 254(2), 317–330 (1988).

    Google Scholar 

  9. E. Behravesh, K. Zygourakis and A. G. Mikos, Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide, J. Biomed. Mater. Res. 65A(2), 261–271 (2003).

    Article  Google Scholar 

  10. E. Behravesh and A. G. Mikos, Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels, J. Biomed. Mater. Res. 66A(3), 698–706 (2003).

    Article  Google Scholar 

  11. H. Shin, S. Jo and A. G. Mikos, Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer, J. Biomed. Mater. Res. 61A(2), 169–179 (2002).

    Article  Google Scholar 

  12. J. S. Temenoff, H. Park, E. Jabbari, D. E. Conway, T. L. Sheffield, C. G. Ambrose and A. G. Mikos, Thermally Cross-Linked Oligo(poly(ethylene glycol) fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells In Vitro, Biomacromolecules 5(1), 5–10 (2004).

    Article  Google Scholar 

  13. R. G. Payne, J. S. McGonigle, M. J. Yaszemski, A. W. Yasko and A. G. Mikos, Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate), Biomaterials 23(22), 4381–4387 (2002).

    Article  Google Scholar 

  14. E. Lieb, J. Tessmar, M. Hacker, C. Fischbach, D. Rose, T. Blunk, A. G. Mikos, A. Gopferich and M. B. Schulz, Poly(D,L-lactic acid)-Poly(ethylene glycol)-Monomethyl Ether Diblock Copolymers Control Adhesion and Osteoblastic Differentiation of Marrow Stromal Cells, Tissue Eng. 9(1), 71–84 (2003).

    Article  Google Scholar 

  15. M. J. Gilmcher, L. C. Bonar, M. D. Grynpas, W. J. Landis and A. H. Roufosse, Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid?, J. Cryst. Growth 53(1), 100–119 (1981).

    Article  Google Scholar 

  16. B. R. Constantz, I. C. Ison, M. T. Fulmer, R. D. Poser, S. T. Smith, M. VanWagoner, J. Ross, S. A. Goldstein, J. B. Jupiter and D. I. Rosenthal, Skeletal Repair by in Situ Formation of the Mineral Phase of Bone, Science 267(5205), 1796–1799 (1995).

    Article  Google Scholar 

  17. C. G. Finkemeier, Bone grafting and bone graft substitutes, J. Bone Joint Surg. Am. 84A(3), 454–464 (2002).

    Google Scholar 

  18. S. N. Parikh, Bone graft substitutes in modern orthopedics, Orthopedics 25(11), 1301–1309 (2002).

    Google Scholar 

  19. J. A. McAuliffe, Bone Graft Substitutes, J. Hand Ther. 16(2), 180–187 (2003).

    Article  Google Scholar 

  20. H. Yuan, M. van den Doel, S. Li, C. A. van Blitterswijk, K. de Groot and J. D. de Bruijn, A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats, J. Mater. Sci. Mater. Med. 13(12), 1271–1275 (2002).

    Article  Google Scholar 

  21. P. Q. Ruhé, H. C. Kroese-Deutman, J. G. C. Wolke, P. H. M. Spauwen and J. A. Jansen, Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits, Biomaterials 25(11), 2123–2132 (2004).

    Article  Google Scholar 

  22. E. J. Blom, J. Klein-Nulend, C. P. A. T. Klein, K. Kurashina, M. A. J. van Waas and E. H. Burger, Transforming growth factor-cell differentiation in vitro, J. Biomed. Mater. Res. A 50(1), 67–74 (2000).

    Article  Google Scholar 

  23. P. Laffargue, P. Fialdes, P. Frayssinet, M. Rtaimate, H. F. Hildebrand and X. Marchandise, Adsorption and release of insulin-like growth factor-1 on porous tricalcium phosphate implant, J. Biomed. Mater. Res. 49A(3), 415–421 (2000).

    Article  Google Scholar 

  24. J. Toquet, R. Rohanizadeh, J. Guicheux, S. Couillaud, N. Passuti, G. Daculsi and D. Heymann, Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic, J. Biomed. Mater. Res. 44A(1), 98–108 (1999).

    Article  Google Scholar 

  25. T. Kai, G. Shao-qing and D. Geng-ting, In vivo evaluation of bone marrow stromal-derived osteoblastsporous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spine fusion, Spine 28(15), 1653–1658 (2003).

    Article  Google Scholar 

  26. J. Goshima, V. M. Goldberg and A. I. Caplan, Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic, Biomaterials 12(2), 253–258 (1991).

    Article  Google Scholar 

  27. H. Ohgushi, M. Okumura, S. Tamai, E. C. Shors and A. I. Caplan, Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation, J. Biomed. Mater. Res. 24A(12), 1563–1570 (1990).

    Article  Google Scholar 

  28. J. W. M. Vehof, P. H. M. Spauwen and J. A. Jansen, Bone formation in calcium-phosphate-coated titanium mesh, Biomaterials 21(2003–2009 (2000).

    Google Scholar 

  29. J. W. M. Vehof, M. T. Haus, A. E. de Ruijter, P. H. M. Spauwen and J. A. Jansen, Bone formation in transforming growth factor beta-I-loaded titanium fiber mesh implants, Clin. Oral Implants Res. 13(1), 94–102 (2002).

    Article  Google Scholar 

  30. J. W. M. Vehof, A. E. de Ruijter, P. H. M. Spauwen and J. A. Jansen, Influence of rhBMP-2 on rat bone marrow stromal cells cultured on titanium fiber mesh, Tissue Eng. 7(4), 373–383 (2001).

    Article  Google Scholar 

  31. J. van den Dolder, J. W. M. Vehof, P. H. M. Spauwen and J. A. Jansen, Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time, J. Biomed. Mater. Res. 62A(3), 350–358 (2002).

    Article  Google Scholar 

  32. J. W. M. Vehof, J. van den Dolder, J. E. de Ruijter, P. H. M. Spauwen and J. A. Jansen, Bone formation in CaP-coated and noncoated titanium fiber mesh, J. Biomed. Mater. Res. 64A(417–426 (2003).

    Google Scholar 

  33. J. W. M. Vehof, J. Mahmood, H. Takita, M. A. van’t Hof, Y. Kuboki, P. H. M. Spauwen and J. A. Jansen, Ectopic bone formation in titanium mesh loaded with bone morphogenetic protein and coated with calcium phosphate, Plast. Reconstr. Surg. 108(2), 434–443 (2001).

    Article  Google Scholar 

  34. J. van den Dolder, E. Farber, P. H. M. Spauwen and J. A. Jansen, Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells, Biomaterials 24(1745–1750 (2003).

    Google Scholar 

  35. J. van den Dolder, P. H. Spauwen and J. A. Jansen, Evaluation of Various Seeding Techniques for Culturing Osteogenic Cells on Titanium Fiber Mesh, Tissue Eng. 9(2), 315–325 (2003).

    Article  Google Scholar 

  36. G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. M. Bursac, R. Langer and L. E. Freed, Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering, Biotechnol. Prog. 14(2), 193–202 (1998).

    Article  Google Scholar 

  37. B.-S. Kim, A. J. Putnam, T. J. Kulik and D. J. Mooney, Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices, Biotechnol. Bioeng. 57(1), 46–54 (1998).

    Article  Google Scholar 

  38. J. R. Mauney, J. Blumberg, M. Pirun, V. Volloch, G. Vunjak-Novakovic and D. L. Kaplan, Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro, Tissue Eng. 10(1–2), 81–92 (2004).

    Article  Google Scholar 

  39. R. L. Carrier, M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, L. E. Freed and G. Vunjak-Novakovic, Cardiac tissue engineering: cell seeding cultivation parameters, and tissue construct characterization, Biotechnol. Bioeng. 64(5), 580–589 (1999).

    Article  Google Scholar 

  40. D. Wendt, A. Marsano, M. Jakob, M. Heberer and I. Martin, Oscillating perfusion of cell suspensions through three-dimensional scaffoldsd enhances cell seeding efficiency and uniformity, Biotechnol. Bioeng. 84(2), 205–214 (2003).

    Article  Google Scholar 

  41. W. T. Godbey, B. S. S. Hindy, M. E. Sherman and A. Atala, A novel use of centrifugal force for cell seeding into porous scaffolds, Biomaterials 25(14), 2799–2805 (2004).

    Article  Google Scholar 

  42. V. I. Sikavitsas, G. N. Bancroft and A. G. Mikos, Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor, J. Biomed. Mater. Res. 62A(1), 136–148 (2002).

    Article  Google Scholar 

  43. A. S. Goldstein, T. M. Juarez, C. D. Helmke, M. C. Gustin and A. G. Mikos, Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds, Biomaterials 22(11), 1279–1288 (2001).

    Article  Google Scholar 

  44. L. Meinel, V. Karageorgiou, R. Fajardo, B. Snyder, V. Shinde-Patil, L. Zichner, D. L. Kaplan, R. Langer and G. Vunjak-Novakovic, Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow, Ann. Biomed. Eng. 32(1), 112–122 (2004).

    Article  Google Scholar 

  45. G. N. Bancroft, V. I. Sikavitsas and A. G. Mikos, Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Eng. 9(3), 549–554 (2003).

    Article  Google Scholar 

  46. J. van den Dolder, G. N. Bancroft, V. I. Sikavitsas, P. H. Spauwen, J. A. Jansen and A. G. Mikos, Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh, J. Biomed. Mater. Res. 64A(2), 235–241 (2003).

    Article  Google Scholar 

  47. G. N. Bancroft, V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen and A. G. Mikos, Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner, Proc. Natl. Acad. Sci. U. S. A. 99(20), 12600–12605 (2002).

    Article  Google Scholar 

  48. V. I. Sikavitsas, G. N. Bancroft, H. L. Holtorf, J. A. Jansen and A. G. Mikos, Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces, Proc. Natl. Acad. Sci. U. S. A. 100(25), 14683–14688 (2003).

    Article  Google Scholar 

  49. M. E. Gomes, V. I. Sikavitsas, E. Behravesh, R. L. Reis and A. G. Mikos, Effect of Flow Perfusion on the Osteogenic Differentiation of Bone Marrow Stromal Cells Cultured on Starch-Based Three-Dimensional Scaffolds, J. Biomed. Mater. Res. 67A(87–95 (2003).

    Google Scholar 

  50. V. I. Sikavitsas, G. N. Bancroft, J. J. Lemoine, M. A. K. Liebschner, M. Dauner and A. G. Mikos, Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable non-woven fiber mesh scaffolds, Ann. Biomed. Eng. 33(1), 63–70 (2005).

    Article  Google Scholar 

  51. H. L. Holtorf, J. A. Jansen and A. G. Mikos, Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: Effect of initial cell phenotype, Biomaterials 26(31), 6208–6216 (2005).

    Article  Google Scholar 

  52. N. Datta, H. L. Holtorf, V. I. Sikavitsas, J. A. Jansen and A. G. Mikos, Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells, Biomaterials 26(9), 971–977 (2005).

    Article  Google Scholar 

  53. H. L. Holtorf, J. A. Jansen and A. G. Mikos, Flow perfusion culture induces the osteoblastic differentiation of marrow stromal cell-scaffold constructs in the absence of dexamethasone, J. Biomed. Mater. Res. 72A(3), 326–334 (2005).

    Article  Google Scholar 

  54. H. L. Holtorf, N. Datta, J. A. Jansen and A. G. Mikos, Scaffold Mesh Size Affects the Osteoblastic Differentiation of Seeded Marrow Stromal Cells Cultured in a Flow Perfusion Bioreactor, J. Biomed. Mater. Res. 74A(2), 171–180 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Holtorf, H.L., Jansen, J.A., Mikos, A.G. (2006). Modulation of Cell Differentiation in Bone Tissue Engineering Constructs Cultured in a Bioreactor. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics