Skip to main content

Physicochemical Characterization of Photopolymerizable Plga Blends

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

  • 2147 Accesses

Abstract

Photopolymerizable systems have been proposed as good candidates for drug delivery 16 and tissue engineering 718 for their ability to be produced in vivo via minimally invasive surgery upon light or UV exposure. However, these systems might show poor light penetration or light scattering through the sample when macro-monomers are formulated with other molecules such as excipients and/or drugs, which might be responsible of hindering the passage of light 19. In such circumstances, macro-monomers can polymerize better and faster close to the source of polymerizing light generating a gradient or an incomplete polymerization through the sample 19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.7. References

  1. Y. An, J.A. Hubbell, Intraarterial protein delivery via intimally-adherent bilayer hydrogels, J Control Rel 64(1–3), 205–215 (2000).

    Article  Google Scholar 

  2. M.B. Mellott, C. Searchy, M.V. Pishko, Release of protein from highly cross-linked hydrogels of poly(ethylene glycol)diacrylate fabricated by UV polymerization, Biomaterials 22(9), 929–941 (2001).

    Article  Google Scholar 

  3. J. Elisseeff, W. McIntosh, K. Fu, T. Blunk, R. Langer, Controlled-release of IGF-I and TGF-b1 in a photo-polymerizing hydrogel for cartilage tissue engineering, J Orthop Res 19(6), 1098–1104 (2001).

    Article  Google Scholar 

  4. K.S. Anseth, A.T. Metters, S.J. Bryant, P.J. Martens, J.H. Elisseeff, C.N. Bowman, In situ forming degradable networks and their application in tissue engineering and drug delivery, J Control Rel 78, 199–209 (2002).

    Article  Google Scholar 

  5. K. A. Davis, K.S. Anseth, Controlled Release from crosslinked degradable networks, Critical Reviews in Therapeutic Drug Carrier Systems 19(4–5), 385–423 (2002).

    Article  Google Scholar 

  6. D. J Quick, K.S. Anseth, DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality, J Control Rel 96(2), 341–351 (2004).

    Article  Google Scholar 

  7. J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Transdermal photopolymerization for minimally invasive implantation, Proc Natl Acad Sci USA 96(6), 3104–3107 (1999).

    Article  Google Scholar 

  8. A.K. Burkoth, K.S. Anseth, A review of photocrosslinked polyanhydrides: in situ forming degradable networks, Biomaterials 21, 2395–2404 (2000).

    Article  Google Scholar 

  9. R. H. Schmedlen, K.S. Masters, J.L. West, Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering, Biomaterials 23, 4325–4332 (2002).

    Article  Google Scholar 

  10. K. Truong Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials 23, 4307–4314 (2002).

    Article  Google Scholar 

  11. J.A. Burdick, K.S. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering, Biomaterials 23, 4315–4323 (2002).

    Article  Google Scholar 

  12. Y. Doo Park, N. Tirelli, J.A. Hubbell, Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks, Biomaterials 24, 893–900 (2003).

    Article  Google Scholar 

  13. D. Wang, C.G. Williams, Q. Li, B. Sharma, J.H. Elisseeff, Synthesis and characterization of a novel degradable phosphate-containing hydrogel, Biomaterials 24, 3969–3980 (2003).

    Article  Google Scholar 

  14. K.S. Masters, D.N. Shah, G. Walker, L.A. Leinwand, K.S. Anseth, Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials, Journal of Biomedical Material Research 71A(1), 172–180 (2004).

    Article  Google Scholar 

  15. F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26(30), 5991–5998 (2005).

    Article  Google Scholar 

  16. Q. Li, C.G. Williams, D.D.N. Sun, J. Wang, K. Leong, J.H. Elisseeff, Photocrosslinkable polysaccharides based on chondroitin sulfate, Journal of Biomedical Material Research 68A(1), 28–33 (2004).

    Article  Google Scholar 

  17. K.S. Masters, D.N. Shah, L.A. Leinwand, K.S. Anseth, Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells, Biomaterials 26(15), 2517–2525 (2005).

    Article  Google Scholar 

  18. C.R. Nuttelman, M.C. Tripodi, K.S. Anseth, Synthetic hydrogel niches that promote hMSC viability, Matrix Biology 24(3), 208–218 (2005).

    Article  Google Scholar 

  19. M.D. Goodner, C.N. Bowman, Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films, Chemical Engineering Science 57, 887–900 (2002).

    Article  Google Scholar 

  20. R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectrometric Identification of Organic Compounds, 5th edition, (John Wiley & Sons, Inc., New York, 1991).

    Google Scholar 

  21. F. Rodriguez, Analysis and identification of polymers, in: Principles of Polymer Systems, edited by J.V. Brown, V.M. Ziobro, and E. Dugger (Hemisphere publishing Corporation, Washington, 1982, 2nd edition), p. 482.

    Google Scholar 

  22. F. Rodriguez, Basic structure of polymers, in: Principles of Polymer Systems, edited by J.V. Brown, V.M. Ziobro, and E. Dugger (Hemisphere publishing Corporation, Washington, 1982, 2nd edition), pp. 17–32.

    Google Scholar 

  23. H.N. Naé, Introduction to rheology, in: Rheological Properties of Cosmetics and Toiletries, edited by D. Laba (Marcel Dekker. Inc., New York, 1993), pp.9–33.

    Google Scholar 

  24. F. Rodriguez, Viscous flow, in: Principles of Polymer Systems, edited by J.V. Brown, V.M. Ziobro, and E. Dugger (Hemisphere publishing Corporation, Washington, 1982, 2nd edition), pp. 155–198.

    Google Scholar 

  25. Department of Physics and Astronomy of Georgia State University, (Georgia, USA, August 2004); http://hyperphysics.phy-astr.gsu.edu/hbase/ppois.html

    Google Scholar 

  26. Handbook of Microemulsion Science and Technology, edited by P. Kumar and K.L. Mittal (Marcel Dekker, Inc., New York, 1999).

    Google Scholar 

  27. Remington. The Science and Practice of Pharmacy, 20th edition, (Philadelphia college of pharmacy and science. Philadelphia, 2000).

    Google Scholar 

  28. W. Wang, Instability, stabilization, and formulation of liquid protein pharmaceuticals, Int J Pharm 185, 129–188 (1999).

    Article  Google Scholar 

  29. M. Bohner, B. Gasser, G. Baroud, P. Heini, Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure, Biomaterials 24, 2721–2730 (2003).

    Article  Google Scholar 

  30. W.D. Cook, Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system, Polymer 33(2), 600–609 (1992).

    Article  Google Scholar 

  31. G.G. Odian. Principles of Polymerization, 3rd edition (John Wiley & Sons, Inc., New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Baroli, B. (2006). Physicochemical Characterization of Photopolymerizable Plga Blends. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics