Skip to main content

Microprocessor Architecture for Yield Enhancement and Reliable Operation

  • Chapter
Book cover High-Performance Energy-Efficient Microprocessor Design

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

Abstract

With the advance of semiconductor scaling, smaller devices become more vulnerable to an SEU (single event upset, i.e. neutron hit etc.) and operating margin of the circuits is reduced both due to reduced operating voltage and larger process variations. Robust circuit design alone cannot solve these problems. Micro-architectural techniques for avoiding defects and error detection and correction microarchitecure can significantly reduce the probability of failure and enhance the yield and the reliable operation of a microprocessor. The failure mechanisms of nanometer class semiconductor VLSI circuits are described as a background. Then concept and methods of error detection and correction are described, followed by microarchitecture/logic design error detection and recovery techniques. Commercial microprocessors using error detection and recovery techniques are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, X.-Y. et al., “An effective method of characterization poly gate CD variation and Its impact on product performance and yield”, Proc. Int. Symp. Semicond. Manuf., 2003, 259–262.

    Google Scholar 

  2. Nagase, M.; Tokashiki, K. “Advanced gate etching for accurate CD control for 130-nm node ASIC manufacturing”, 2004 17(3), 281–285.

    Google Scholar 

  3. Schellenberg, F. “A little light magic [optical lithography]”, Spectrum IEEE, 2003, 40(9), 34–39.

    Article  Google Scholar 

  4. Asenov, A.; Kaya, S.; Brown, A.R. “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness”, Electron Devices, 2003 50(5), 1254–1260.

    Article  Google Scholar 

  5. Asenov, A. “Random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs: A 3D ‘atomistic’ simulation study,” IEEE Trans. Electron Dev., 1998, 45, 2505–2513.

    Article  Google Scholar 

  6. Pollack, F. “New microarchitecture challenges in the coming generations of CMOS”, 1999. MICRO-32. Keynote, 32nd Annual International Symposium on Microarchitecture.

    Google Scholar 

  7. Gelsinger, P.P. “Microprocessors for the new millennium: challenges, opportunities, and new frontiers,” IEEE Int. Solid-State Circuits Conf., 2001, XLIV, 22–25.

    Google Scholar 

  8. Chen, H.H.; Ling, D.D. “Power supply noise analysis methodology for deep-submicron Vlsi chip design”, Proc. 34th Design Automation Conf., 1997, 638–643.

    Google Scholar 

  9. Zhao, S.; Roy, K.; Koh, C.-K. “Estimation of inductive and resistive switching noise on power supply network in deep sub-micron CMOS circuits”, Proceedings, Int. Conf. Computer Design, 2000, 65–72.

    Google Scholar 

  10. Prakash, M. “Cooling challenges for silicon integrated circuits”, Proc. 9th Int. Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. (ITHERM’ 04) 2, 705–706

    Article  Google Scholar 

  11. Bota, S.A. et al., “Within die thermal gradient impact on clock-skew: a new type of delay-fault mechanism”, Proc., Int. Test Conf., 2004, 1276–1283

    Google Scholar 

  12. Banerjee, K.; Mehrotra, A. “Global (interconnect) warming”, Circuits and Devices IEEE, 17(5), 16–32

    Google Scholar 

  13. Ziegler J.F. et.al., “IBM experiments in soft fails in computer electronics (1978–1994)”, IBM J. Res. Dev. 1996, 40(1), 3–18

    Google Scholar 

  14. Ziegler, J.F. “Terrestrial cosmic rays”, IBM J. Res. Dev., 1996, 40(1), 19–40.

    MathSciNet  Google Scholar 

  15. Freeman, L.B. “Critical charge calculations for a bipolar SRAM array”, IBM J. Res. Dev. 1996, 40(1), 119–130.

    Google Scholar 

  16. Baumann, R. “The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction,” IEDM Tech. Dig., December 2002, 329–332.

    Google Scholar 

  17. Tosaka, Y.; Ehara, H.; Igeta, M. et al., “Comprehensive study of soft errors in advanced CMOS circuits with 90/130 nm technology,” IEDM Tech. Dig., December 2004, 941–944.

    Google Scholar 

  18. Liden, P. et al., “On latching probability of particle induced transient in combinational networks”, Int. Symp. on Fault Tolerant Computing FTCS24, June 1994, 340–349.

    Google Scholar 

  19. http://public.itrs.net/Files/2003ITRS/Home2003.htm

    Google Scholar 

  20. Smith, R. et al., “32K and 16K MOS RAMs using laser redundancy techniques”, Solid-State Circuits Conference. Digest of Technical Papers, 1982, XXV, 252–253.

    Google Scholar 

  21. Horowitz, M.; Dally, W. “How scaling will change processor architecture”, ISSCC Dig Tech Pap. 2004, 132–133.

    Google Scholar 

  22. Ando, H.; Tzartzanis N.; Walker, W. “A case study: power and performance improvement of a chip multi-processor for transaction processing”, IEEE Trans. VLSI Syst., July 2005 (To be published).

    Google Scholar 

  23. Alves, L.C. et al., “RAS design for the IBM eServer z900”, IBM J. Res. Dev., 2002, 46(4/5), 503–522.

    Google Scholar 

  24. Pham, D. et al., “The design and implementation of a first-generation CELL Processor”, Tech. Digest, Int. Solid-State Ciruit Conf., February 2005, 184–185.

    Google Scholar 

  25. Wuu, J. et al., “The asynchronous 24MB on-chip level-3 cache for a dual-core Itanium-family processor”, Tech. Digest, Int. Solid-State Ciruit Conf., February 2005, 488–489.

    Google Scholar 

  26. Nelson, V.P. “Fault-tolerant computing: fundamental concepts”, IEEE Computer, 1990, 23(7), 19–25.

    Google Scholar 

  27. Berger, J. “A note on error detecting codes for asymmetric channel”, Info Control, 1961, 68–73

    Google Scholar 

  28. Fujiwara, E.; Pradhan, D.K. “Error-control coding in computers”, IEEE Computer, 1990, 23(7), 63–72.

    Google Scholar 

  29. Hsiao, M.Y. “A class of optimal minimum odd-weight-column SECDED codes”, IBM J. Res. Dev., 1970, 14, 395–401.

    MathSciNet  Google Scholar 

  30. Kaneda, S.; Fujiwara, E. “Single byte error correcting-double byte error Detecting codes for memory systems”, IEEE Trans. Computers, July 1982, C31(7), 737–739.

    MathSciNet  Google Scholar 

  31. Reed I.S.; Solomon, G. “Polynomial codes over certain finite fields”, J. Soc. Indust. Appl. Math1960, 8, 300–304.

    Article  MATH  MathSciNet  Google Scholar 

  32. Gorshe, S.; Bose, B. “A self-checking ALU design with efficient codes”, 14th VLSI Test Symp. April 1996, 157–161.

    Google Scholar 

  33. Nocolaidis, M. “Efficient implementations of self-checking adders and ALUs”, Int. Symp. on Fault Tolerant Computing FTCS23, June 1993, 586–595

    Google Scholar 

  34. Sparmann, U.; Reddy, S. “On the effectiveness of residue checking for parallel two’s complement multipliers”, IEEE Trans VLSI Systems, 1996, 4(2), 219–228.

    Google Scholar 

  35. Matrosova, A.; Ostanin, S. “Self-checking FSM design with observing only FSM outputs”, Proc. 6th Int. On-Line Testing Workshop, 2000. 153–154.

    Google Scholar 

  36. Goloubeva, O. et al., “Soft-error detection using control flow assertions”, Int. Symp. on Defect and Fault Tolerance in VLSI Systems, November 2003, 581–588.

    Google Scholar 

  37. Hint, D.B.; Marinos, P.N. “A general purpose cache-aided rollback error recovery (CARER) technique”, 17th Symp. on Fault Tolerant Computing, 1987, 170–175

    Google Scholar 

  38. Ahmed, R.E.; Frazier R.C.; Marinos, P.N. “Cache-aided rollback recovery (CARER) algorithms for shared-memory multiprocessor systems”, Digest of Papers, 20th Int. Symp. on Fault-tolerant Computing, 1990, 82–88.

    Google Scholar 

  39. Bowen, N.S.; Pradhan, D.K. “Processor-and memory-based checkpoint and rollback recovery”, IEEE Computer, 1993, 26(2), 22–31.

    Google Scholar 

  40. Ando, H.; Kitamura, T.; Shebanow, M.; Butler, M. US Patent 6,519,730 “Computer and error recovery method for the same”; February 11, 2003, Filed on March 16, 2000

    Google Scholar 

  41. Sato, T. “Exploiting instruction redundancy for transient fault tolerance”, Int. Symp. on Defect and Fault Tolerance in VLSI Systems, November 2003, 547–554.

    Google Scholar 

  42. Webb, C.F.; Liptay, J.S. “A high-frequency custom CMOS S/390 microprocessor”, IBM J. Res. Dev. 1997, 41(4/5), 463–474.

    Article  Google Scholar 

  43. Schwarz, E.M. et al., “The microarchitecture of the IBM eServer z900 processor”, IBM J. Res. Dev. 2002, 46(4/5), 381–396.

    Google Scholar 

  44. Rusu, S. et al., “A 1.5-GHz 130-nm Itanium 2 processor with 6-MB on-die L3 cache”, IEEE J. Solid-State Circuits, 2003, 38(11), 1887–1895.

    Article  Google Scholar 

  45. Naffziger, S.; Stackhouse, B.; Grutkowski, T. “The implementation of a 2-core multithreaded Itanium®-family processor”, ISSCC Dig. Tech. Pap., 2005, 182–183.

    Google Scholar 

  46. Inoue, A. “Fujitsu’s new SPARC64 V for mission-critical servers”, Microprocessor Forum 2002.

    Google Scholar 

  47. Ando, H. et al., “A1.3GHz fifth-generation SPARC64 microprocessor”, IEEE J. Solid-State Circuits, 2003, 11, 1896–1903.

    Article  Google Scholar 

  48. Slegel, T.J.; Pfeffer E.; Magee, A. “The IBM eServer z990 microprocessor”, IBM J. Res. Dev. 2004, 48(3/4), 295–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ando, H. (2006). Microprocessor Architecture for Yield Enhancement and Reliable Operation. In: Oklobdzija, V.G., Krishnamurthy, R.K. (eds) High-Performance Energy-Efficient Microprocessor Design. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34047-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34047-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28594-8

  • Online ISBN: 978-0-387-34047-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics