Advertisement

Justification Technique Generalizations

  • Vicente Valls
  • Francisco Ballestín
  • Sacramento Quintanilla
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)

Abstract

The justification technique was introduced various decades ago for the resource-constrained project scheduling problem, although it has rarely been used with the problem. Justification is a simple and quick technique which when applied to schedules produces a new schedule that is, at most, as long as the original schedule — and often shorter. A recent article (Valls et al, 2005), showed that incorporating justification in heuristic algorithms can produce a substancial improvement in the results obtained. These results have motivated us to generalise this technique in order to study it in greater depth. This paper proposes distinct forms and generalisations for the justification technique and studies the relation existing among sets of obtainable schedules. The obtained results show that the proposed generalisations are worthwhile. Several computational tests have been performed to ascertain the impact of the generalisations on algorithmic efficiency.

Keywords

resource constrained project scheduling justification heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz, J., and Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling, Annals of Operations Research, 102:83–109.CrossRefMathSciNetGoogle Scholar
  2. Ballestín, F., Vails, V., and Quintanilla, S. (2006). Due Dates and RCPSP, in: Perspectives in Modern Project Scheduling, J. Józefowska and J. Weglarz, eds, Kluwer, pp. 79–104.Google Scholar
  3. Dorndorf, U., Pesch, E., and Phan-Huy, T. (2000). A branch-and-bound algorithm for the resource-constrained project scheduling problem, Mathematical Methods of Operations Research, 52:413–439.CrossRefMathSciNetGoogle Scholar
  4. Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling, Naval Research Logistics, 45:733–750.CrossRefMathSciNetGoogle Scholar
  5. Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource constraints, Naval Research Logistics, 49(5):433–448.CrossRefMathSciNetGoogle Scholar
  6. Kochetov, Y., and Stolyar, A. (2003). Evolutionary local search with variable neighborhood for the resource constrained project scheduling problem, in: Proceedings of the 3rd International Workshop of Computer Science and Information Technologies.Google Scholar
  7. Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41:1693–1703.Google Scholar
  8. Kolisch, R., and Sprecher, A. (1997). PSPLIB-A project scheduling library, European Journal of Operational Research, 96:205–216.CrossRefGoogle Scholar
  9. Li, KY., and Willis, RJ. (1992). An iterative scheduling technique for resource-constrained project scheduling, European Journal of Operational Research, 56:370–379.CrossRefGoogle Scholar
  10. Merkle, D., Middendorf, M., and Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling, IEEE Transaction on Evolutionary Computation, 6:333–346.CrossRefGoogle Scholar
  11. Tormos, P., and Lova, A. (2001). A competitive heuristic solution technique for resource-constrained project scheduling, Annals of Operations Research, 102:65–81.CrossRefMathSciNetGoogle Scholar
  12. Valls, V., Quintanilla, S., and Ballestín, F. (2003a). Resource-constrained project scheduling: a critical activity reordering heuristic, European Journal of Operational Research, 149:282–301.CrossRefMathSciNetGoogle Scholar
  13. Valls, V., Ballestín, F., and Quintanilla, S. (2003b). A hybrid genetic algorithm for the RCPSP. Technical Report, Departamento de Estadística e Investi-gación Operativa, Universidad de Valencia.Google Scholar
  14. Valls, V., Ballestín, F., and Quintanilla, S. (2004). A population-based approach to the resource-constrained project scheduling problem, Annals of Operations Research, 131:305–324.CrossRefMathSciNetGoogle Scholar
  15. Valls, V., Ballestín, F., and Quintanilla, S. (2005), Justification and RCPSP: a technique that pays, European Journal of Operational Research, 165:375–386.CrossRefGoogle Scholar
  16. Wiest, J D. (1964). Some properties of schedules for large projects with limited resources, Operations Research, 12:395–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Vicente Valls
    • 1
  • Francisco Ballestín
    • 2
  • Sacramento Quintanilla
    • 3
  1. 1.Dpto. de Estadística e Investigación Operativa, Facultad de MatemáticasUniversitat de ValenciaBurjassot, ValenciaSpain
  2. 2.Dpto. de Estadística e Investigación Operativa, Facultad de Ciencias Económicas y EmpresarialesUniversidad Pública de NavarraPamplonaSpain
  3. 3.Dpto. de Economía Financiera y Matemática, Facultad de Económicas y EmpresarialesUniversitat de ValenciaValenciaSpain

Personalised recommendations