Skip to main content

Abstract

Due dates are an essential feature of real projects, but little effort has been made in studying the RCPSP with due dates in the activities. This paper tries to bridge this gap by studying two problems: the TardinessRCPSP, in which the objective is total tardiness minimization and the DeadlineRCPSP, in which the due dates are strict (deadlines) and the objective is makespan minimization. The first problem is NP-hard and the second is much harder, since finding a feasible solution is already NP-hard. This paper has three objectives: Firstly to compare the performance on both problems of well-known RCPSP heuristics - priority rules, sampling procedures and metaheuristics - with new versions we have developed that take due dates into consideration. Secondly, to present an instance generator that can generate instances with loose, medium, and tight due dates for computational study. And, finally, to adapt the technique of justification to deal with due dates and deadlines and to show its profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballestín, F. (2002). Nuevos métodos de resolución del problema de secuenciación de proyectos con recursos limitados, Unpublished PhD Dissertation, Universidad de Valencia.

    Google Scholar 

  • Blazewicz, J., Lenstra, J.K., and Rinooy Kan, A.H.G. (1983). Scheduling subject to resource constraints: classification and complexity, Discrete Applied Mathematics, 5:11–24.

    Article  MathSciNet  Google Scholar 

  • Brucker, P., Drexl, A., Möhring, R., Neumann K. and Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods, European Journal of Operational Research, 112:3–41.

    Article  Google Scholar 

  • Dorigo, M., and Maniezzo, V. (1993). Parallel Genetic Algorithms: Introduction and Overview of Current Research, in: Parallel Genetic Algorithms: Theory & Applications, J. Stenders, ed., IOS Press, Amsterdam, pp. 5–42.

    Google Scholar 

  • Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company. San Francisco.

    MATH  Google Scholar 

  • Gordon, V., Proth, J-M., and Chu, C. (2002). A survey of the state-of-the art of common due date assignment and scheduling research, European Journal of Operational Research, 139:1–25.

    Article  MathSciNet  Google Scholar 

  • Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling, Naval Research Logistics, 45:733–750.

    Article  MathSciNet  Google Scholar 

  • Herroelen, W., Demeulemeester, E., and De Reyck, B. (1998). A Classification scheme for project scheduling, in: Project Scheduling. Recent Models, Algorithms and Applications, J. Weglarz, ed., Kluwer Academic Publishers, pp. 1–26.

    Google Scholar 

  • Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness, Management Science Research Project, Technical Report No. 43, UCLA.

    Google Scholar 

  • Kolisch, R. (1995). Project Scheduling under Resource Constraints-Efficient Heuristics for several Problem Classes, Phisica, Heidelberg.

    Google Scholar 

  • Kolisch, R. (1996). Efficient priority rules for the resource-constrained project scheduling problem, Journal of Operations Management 14:179–192.

    Article  Google Scholar 

  • Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41:1693–1703.

    Article  Google Scholar 

  • Kolisch, R., and Hartmann, S. (1999). Heuristic algorithms for solving the resource-constrained, project scheduling problem: Classification and computational analysis, in: Project Scheduling. Recent Models, Algorithms and Applications, Weglarz, J., ed., Kluwer Academic Publishers, Boston, pp. 147–178.

    Google Scholar 

  • Kolisch, R., and Sprecher, A. (1997). PSPLIB-A project scheduling library, European Journal of Operational Research, 96:205–216.

    Article  Google Scholar 

  • Koulamas, C. (1994). The total tardiness problem: Review and extensions, Operations Research, 42:1025–1041.

    MathSciNet  Google Scholar 

  • Li, KY., and Willis, RJ. (1992). An iterative scheduling technique for resource-constrained project scheduling, European Journal of Operational Research, 56:370–379.

    Article  Google Scholar 

  • Neumann, K., Schwindt, C., and Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources, 2nd edition, Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Özdamar, L., and Ulusoy, G. (1996). An iterative local constraint based analysis for solving the resource constrained project scheduling problem, Journal of Operations Management, 14:193–208.

    Article  Google Scholar 

  • Schirmer, A., and Riesenberg, S. (1997). Parameterized Heuristics for Project Scheduling-Biased Random Sampling Methods, Technical report 456, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel.

    Google Scholar 

  • Thomas, P.R., and Salhi, S. (1997). An investigation into the relationship of heuristic performance with network-resource characteristics, Journal of the Operational Research Society, 48:34–43.

    Article  Google Scholar 

  • Tormos, P., and Lova, A. (2001). A competitive heuristic solution technique for resource-constrained project scheduling, Annals of Operations Research, 102:65–81.

    Article  MathSciNet  Google Scholar 

  • Valls, V., Ballestín, F., and Quintanilla, S. (2005a), Justification and RCPSP: a technique that pays, European Journal of Operational Research, 165:375–386.

    Article  Google Scholar 

  • Valls, V., Ballestín, F., and Quintanilla, S. (2006). Justification Technique Generalisations, in: Perspectives in Modern Project Scheduling, Józefowska J., and Weglarz J., eds, Kluwer, pp. 205–223.

    Google Scholar 

  • Vanhoucke, M. (2002). Optimal due date assignment in project scheduling, Vlerick Leuven Gent Management School Working Paper Series 2002-19, Vlerick Leuven Gent Management School.

    Google Scholar 

  • Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (1999). Exact procedure for the unconstrained weighted earliness-tardiness project scheduling problem, Research Report. Department of Applied Economics, Katholieke Universiteit, Leuven, Belgium.

    Google Scholar 

  • Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2001). Exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem, Annals of Operations Research, 102:179–196.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ballestín, F., Valls, V., Quintanilla, S. (2006). Due Dates and RCPSP. In: Józefowska, J., Weglarz, J. (eds) Perspectives in Modern Project Scheduling. International Series in Operations Research & Management Science, vol 92. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33768-5_4

Download citation

Publish with us

Policies and ethics