Advertisement

Due Dates and RCPSP

  • Francisco Ballestín
  • Vicente Valls
  • Sacramento Quintanilla
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)

Abstract

Due dates are an essential feature of real projects, but little effort has been made in studying the RCPSP with due dates in the activities. This paper tries to bridge this gap by studying two problems: the TardinessRCPSP, in which the objective is total tardiness minimization and the DeadlineRCPSP, in which the due dates are strict (deadlines) and the objective is makespan minimization. The first problem is NP-hard and the second is much harder, since finding a feasible solution is already NP-hard. This paper has three objectives: Firstly to compare the performance on both problems of well-known RCPSP heuristics - priority rules, sampling procedures and metaheuristics - with new versions we have developed that take due dates into consideration. Secondly, to present an instance generator that can generate instances with loose, medium, and tight due dates for computational study. And, finally, to adapt the technique of justification to deal with due dates and deadlines and to show its profitability.

Keywords

Project management due dates heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballestín, F. (2002). Nuevos métodos de resolución del problema de secuenciación de proyectos con recursos limitados, Unpublished PhD Dissertation, Universidad de Valencia.Google Scholar
  2. Blazewicz, J., Lenstra, J.K., and Rinooy Kan, A.H.G. (1983). Scheduling subject to resource constraints: classification and complexity, Discrete Applied Mathematics, 5:11–24.CrossRefMathSciNetGoogle Scholar
  3. Brucker, P., Drexl, A., Möhring, R., Neumann K. and Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods, European Journal of Operational Research, 112:3–41.CrossRefGoogle Scholar
  4. Dorigo, M., and Maniezzo, V. (1993). Parallel Genetic Algorithms: Introduction and Overview of Current Research, in: Parallel Genetic Algorithms: Theory & Applications, J. Stenders, ed., IOS Press, Amsterdam, pp. 5–42.Google Scholar
  5. Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Company. San Francisco.zbMATHGoogle Scholar
  6. Gordon, V., Proth, J-M., and Chu, C. (2002). A survey of the state-of-the art of common due date assignment and scheduling research, European Journal of Operational Research, 139:1–25.CrossRefMathSciNetGoogle Scholar
  7. Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling, Naval Research Logistics, 45:733–750.CrossRefMathSciNetGoogle Scholar
  8. Herroelen, W., Demeulemeester, E., and De Reyck, B. (1998). A Classification scheme for project scheduling, in: Project Scheduling. Recent Models, Algorithms and Applications, J. Weglarz, ed., Kluwer Academic Publishers, pp. 1–26.Google Scholar
  9. Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness, Management Science Research Project, Technical Report No. 43, UCLA.Google Scholar
  10. Kolisch, R. (1995). Project Scheduling under Resource Constraints-Efficient Heuristics for several Problem Classes, Phisica, Heidelberg.Google Scholar
  11. Kolisch, R. (1996). Efficient priority rules for the resource-constrained project scheduling problem, Journal of Operations Management 14:179–192.CrossRefGoogle Scholar
  12. Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41:1693–1703.CrossRefGoogle Scholar
  13. Kolisch, R., and Hartmann, S. (1999). Heuristic algorithms for solving the resource-constrained, project scheduling problem: Classification and computational analysis, in: Project Scheduling. Recent Models, Algorithms and Applications, Weglarz, J., ed., Kluwer Academic Publishers, Boston, pp. 147–178.Google Scholar
  14. Kolisch, R., and Sprecher, A. (1997). PSPLIB-A project scheduling library, European Journal of Operational Research, 96:205–216.CrossRefGoogle Scholar
  15. Koulamas, C. (1994). The total tardiness problem: Review and extensions, Operations Research, 42:1025–1041.MathSciNetGoogle Scholar
  16. Li, KY., and Willis, RJ. (1992). An iterative scheduling technique for resource-constrained project scheduling, European Journal of Operational Research, 56:370–379.CrossRefGoogle Scholar
  17. Neumann, K., Schwindt, C., and Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources, 2nd edition, Springer Verlag, Berlin.zbMATHGoogle Scholar
  18. Özdamar, L., and Ulusoy, G. (1996). An iterative local constraint based analysis for solving the resource constrained project scheduling problem, Journal of Operations Management, 14:193–208.CrossRefGoogle Scholar
  19. Schirmer, A., and Riesenberg, S. (1997). Parameterized Heuristics for Project Scheduling-Biased Random Sampling Methods, Technical report 456, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel.Google Scholar
  20. Thomas, P.R., and Salhi, S. (1997). An investigation into the relationship of heuristic performance with network-resource characteristics, Journal of the Operational Research Society, 48:34–43.CrossRefGoogle Scholar
  21. Tormos, P., and Lova, A. (2001). A competitive heuristic solution technique for resource-constrained project scheduling, Annals of Operations Research, 102:65–81.CrossRefMathSciNetGoogle Scholar
  22. Valls, V., Ballestín, F., and Quintanilla, S. (2005a), Justification and RCPSP: a technique that pays, European Journal of Operational Research, 165:375–386.CrossRefGoogle Scholar
  23. Valls, V., Ballestín, F., and Quintanilla, S. (2006). Justification Technique Generalisations, in: Perspectives in Modern Project Scheduling, Józefowska J., and Weglarz J., eds, Kluwer, pp. 205–223.Google Scholar
  24. Vanhoucke, M. (2002). Optimal due date assignment in project scheduling, Vlerick Leuven Gent Management School Working Paper Series 2002-19, Vlerick Leuven Gent Management School.Google Scholar
  25. Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (1999). Exact procedure for the unconstrained weighted earliness-tardiness project scheduling problem, Research Report. Department of Applied Economics, Katholieke Universiteit, Leuven, Belgium.Google Scholar
  26. Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2001). Exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem, Annals of Operations Research, 102:179–196.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Francisco Ballestín
    • 1
  • Vicente Valls
    • 2
  • Sacramento Quintanilla
    • 3
  1. 1.Dpto. de Estadística e Investigatión Operativa, Facultad de Ciencias Económicas y EmpresarialesUniversidad Pública de NavarraPamplonaSpain
  2. 2.Dpto. de Estadística e Investigatión Operativa, Facultad de MatemáticasUniversitat de ValenciaBurjassot, ValenciaSpain
  3. 3.Dpto. de Economía Financiera y Matemática, Facultad de Económicas y EmpresarialesUniversitat de ValenciaValenciaSpain

Personalised recommendations