Advertisement

Proactive-Reactive Project Scheduling Trade-Offs and Procedures

  • Stijn Van de Vonder
  • Erik Demeulemeester
  • Roel Leus
  • Willy Herroelen
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)

Abstract

The vast majority of the research efforts in project scheduling over the past several years have concentrated on the development of exact and heuristic procedures for the generation of a workable baseline schedule assuming complete information and a static and deterministic environment. During project execution, however, a project may be subject to considerable uncertainty. Proactive-reactive project scheduling deals with uncertainty by creating a baseline schedule that is as much as possible protected against disruptions and by deploying reactive scheduling procedures to revise or reoptimize this schedule when necessary. This chapter focuses on the main principles of proactive-reactive scheduling and dwells on schedule robustness and its measurements. A number of recently developed proactive and reactive scheduling heuristics are described and their working principles are illustrated on a problem example

Keywords

Project scheduling uncertainty robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigues, C. and Roubellat, F. (2000). A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes, European Journal of Operational Research, 127:294–316.CrossRefGoogle Scholar
  2. Artigues, C., Roubellat, F. and Billaut J.C. (1999). Characterization of a set of schedules in a resource-constrained multi-project scheduling problem with multiple modes, International Journal of Industrial Engineering, 6:112–122.Google Scholar
  3. Artigues, C., Billaut, J.C. and Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling, European Journal of Operational Research, 165:314–328.CrossRefMathSciNetGoogle Scholar
  4. Aytug, H., Lawley, M., McKay, K., Mohan, S. and Uzsoy, R. (2005). Executing production schedules in the face of uncertainties: A review and some future directions. European Journal of Operational Research, 161:86–110.CrossRefMathSciNetGoogle Scholar
  5. Billaut, J.-C, Moukrim, A. and Sanlaville, E. (Eds.) (2005). Flexibilité et robustesse en ordonnancement, Traité IC2, Série Informatique et systèmes d’information, Hermès-Lavoisier.Google Scholar
  6. Billaut, J.C. and Roubellat, F. (1996a). A new method for workshop real-time scheduling, International Journal of Production Research, 34:1555–1579.Google Scholar
  7. Billaut, J.C. and Roubellat, F. (1996b). Characterization of a set of schedules in a multiple resource context, Journal of Decision Systems, 5:95–109.Google Scholar
  8. Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1983). Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics, 5:11–24.CrossRefMathSciNetGoogle Scholar
  9. Davenport, A. and Beck, J. (2002). A survey of techniques for scheduling with uncertainty. Unpublished manuscript.Google Scholar
  10. Demeulemeester, E. and Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem, Management Science, 38:1803–1818.Google Scholar
  11. Demeulemeester, E. and Herroelen, W. (1997). New benchmark results for the resource-constrained project scheduling problem, Management Science, 43:1485–1492.Google Scholar
  12. Demeulemeester, E. and Herroelen, W. (2002). Project scheduling-A research handbook, International Series in Operations Research & Management Science, Vol. 49, Kluwer Academic Publishers, Boston.zbMATHGoogle Scholar
  13. Demeulemeester, E., Vanhoucke, M. and Herroelen, W. (2003). RanGen: A random generator for activity-on-the-node networks, Journal of Scheduling, 6:17–38.CrossRefMathSciNetGoogle Scholar
  14. Elmaghraby, S.E.E., Herroelen, W.S. and Leus, R. (2003). Note on the paper “Resource-constrained project scheduling using enhanced theory of constraints”, International Journal of Project Management, 21:301–305.CrossRefGoogle Scholar
  15. Glover, F. (1989). Tabu search, Part I, INFORMS Journal of Computing, 1:190–206.MathSciNetGoogle Scholar
  16. Glover, F. (1990). Tabu search, Part II, INFORMS Journal of Computing, 2:4–32.CrossRefGoogle Scholar
  17. Goldratt, E. (1997). Critical chain, The North River Press.Google Scholar
  18. Hagstrom, J. (1988). Computational complexity of PERT problems, Computers and Operations Research, 18:139–147.MathSciNetGoogle Scholar
  19. Herroelen, W., De Reyck, B. and Demeulemeester, E. (2000). On the paper “Resource-constrained project scheduling: notation, classification, models and methods” by Brucker et al, European Journal of Operational Research, 128:221–230.Google Scholar
  20. Herroelen, W. and Leus, R. (2001). On the merits and pitfalls of critical chain scheduling, Journal of Operations Management, 19:559–577.CrossRefGoogle Scholar
  21. Herroelen, W. and Leus, R. (2004). The construction of stable baseline schedules, European Journal of Operational Research, 156:550–565.CrossRefMathSciNetGoogle Scholar
  22. Herroelen, W. and Leus, R. (2005). Project scheduling under uncertainty-Survey and research potentials, European Journal of Operational Research, 165:289–306.CrossRefGoogle Scholar
  23. Herroelen, W., Leus, R. and Demeulemeester E. (2002). Critical chain project scheduling-Do not oversimplify, Project Management Journal, 33:46–60.Google Scholar
  24. Hoogeveen, H. (2005). Multicriteria scheduling, European Journal of Operational Research, 167:592–623.CrossRefMathSciNetGoogle Scholar
  25. Kolisch, R. (1996). Efficient priority rules for the resource-constrained project scheduling problem, Journal of Operations Management, 14:179–192.CrossRefGoogle Scholar
  26. Kouvelis, P. and Yu, G. (1997). Robust discrete optimization and its applications, Kluwer Academic Publishers, Boston.zbMATHGoogle Scholar
  27. Leus, R. (2003). The generation of stable project plans-Complexity and exact algorithms, Ph.D thesis, K.U.Leuven, Belgium.Google Scholar
  28. Leus, R. and Herroelen, W. (2001). On the merits and pitfalls of critical chain scheduling, Journal of Operations Management, 19:559–577.CrossRefGoogle Scholar
  29. Leus, R. and Herroelen, W. (2004). Stability and resource allocation in project planning, HE Transactions, 36:667–682.Google Scholar
  30. Leus, R. and Herroelen, W. (2005). The complexity of machine scheduling for stability with a single disrupted job, Operations Research Letters, 33:151–156.CrossRefMathSciNetGoogle Scholar
  31. Mehta, S. and Uzsoy R. (1998). Predictive scheduling of a job shop subject to breakdowns, IEEE Transactions on Robotics and Automation, 14:365–378.CrossRefGoogle Scholar
  32. Möhring, R.H., Radermacher, F.J. and Weiss, G. (1984). Stochastic scheduling problems I-General strategies, ZOR-Zeitschrift für Operations Research, 28:193–260.CrossRefGoogle Scholar
  33. Möhring, R.H., Radermacher, F.J. and Weiss, G. (1985). Stochastic scheduling problems II-Set strategies, ZOR-Zeitschrift für Operations Research, 29:65–104.CrossRefGoogle Scholar
  34. Neumann, K., Schwindt, C. and Zimmermann, J. (2003). Project scheduling with time windows and scarce resources: Temporal and resource-constrained project scheduling with regular and nonregular objective functions, Springer-Verlag.Google Scholar
  35. Newbold, R.C. (1998). Project management in the fast lane: Applying the Theory of Constraints, St. Lucie Press, New York.Google Scholar
  36. Pinedo, M. (2002). Scheduling. Theory, algorithms, and systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  37. Roy, B. (2002). Robustesse de quoi et vis-à-vis de quoi mais aussi robustesse pourquoi en aide à la décision?, Proceedings of the 56th Meeting of the European Working Group on Multiple Criteria Decision Making (Figueira, J., Henggeler-Anthunes, C. and Climaco, J. (Eds.), Coimbra, Portugal.Google Scholar
  38. Sanlaville, E. (2004). Ordonnancement sous conditions changeantes, Habilitation à Diriger des Recherches, Université Blaise Pascal, Clermont-Ferrand, France.Google Scholar
  39. Stork, F. (2001). Stochastic resource-constrained project scheduling, Ph.D Thesis. TU Berlin, Berlin, Germany.Google Scholar
  40. Tavares, L., Ferreira, J. and Coelho, J. (1998). On the optimal management of project risk, European Journal of Operational Research, 107:451–469.CrossRefGoogle Scholar
  41. Tukel, O.I., Rom, W.O. and Eksioglu, S.D. (2005). An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, to appear.Google Scholar
  42. Van de Vonder, S., Demeulemeester, E., Leus, R. and Herroelen, W. (2005a). The use of buffers in project management: The trade-off between stability and makespan, International Journal of Production Economics, 97:227–240.CrossRefGoogle Scholar
  43. Van de Vonder, S., Demeulemeester, E. and Herroelen, W. (2005b). An investigation of efficient and effective predictive-reactive project scheduling procedures, Journal of Scheduling, to appear.Google Scholar
  44. Van de Vonder, S., Demeulemeester, E. and Herroelen, W. (2005c). Heuristic procedures for generating stable project baseline schedules, Research Report 0516, Department of Applied Economics, K.U. Leuven, Belgium.Google Scholar
  45. Van de Vonder S., Demeulemeester, E., Herroelen, W. and Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling, International Journal of Production Research, 44:215–236.CrossRefGoogle Scholar
  46. Vanhoucke, M., Demeulemeester, E. and Herroelen, W. (2001). An exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem, Annals of Operations Research, 102:179–196.CrossRefMathSciNetGoogle Scholar
  47. Wu, S.D., Storer, H.S. and Chang, P.-C. (1993). One-machine rescheduling heuristics with efficiency and stability as criteria, Computers and Operations Research, 20:1–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Stijn Van de Vonder
    • 1
  • Erik Demeulemeester
    • 1
  • Roel Leus
    • 1
  • Willy Herroelen
    • 1
  1. 1.Research Center for Operations ManagementK.U. LeuvenLeuvenBelgium

Personalised recommendations