Advertisement

Resource-Constrained Project Scheduling with Time Windows

Recent developments and new applications
  • Klaus Neumann
  • Christoph Schwindt
  • Jürgen Zimmermann
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)

Abstract

Recent results on resource-constrained project scheduling with time windows are reviewed. General temporal constraints (resulting from minimum and maximum time lags between project activities), several different types of scarce resources, and a large variety of time-based, financial, and resource-based objective functions are considered. Emphasis is placed on an order-based structural analysis of the feasible region of project scheduling problems and a classification and discussion of objective functions important to practice, which can be exploited for constructing efficient solution procedures. After those structural issues, methods for solving time-constrained project scheduling problems are proposed. Next, the resolution of conflicts for renewable, allocatable, synchronizing, changeover, and cumulative resources and thus the solving of corresponding resource-constrained project scheduling problems are studied. Finally, new applications of resource-constrained project scheduling are presented: factory pick-up of new cars and batch scheduling in process industries.

Keywords

Deterministic project scheduling regular and nonregular objective functions types of scarce resources exact solution methods customer-oriented factory pick-up batch scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993). Network Flows, Prentice Hall, Englewood Cliffs.Google Scholar
  2. Bartusch, M., Möhring, R.H., and Radermacher, F.J. (1988). Scheduling project networks with resource constraints and time windows, Annals of Operations Research 16:201–240.CrossRefMathSciNetGoogle Scholar
  3. Demeulemeester, E.L., Herroelen, W.S. (2002). Project Scheduling — A Research Handbook, Kluwer, Boston.zbMATHGoogle Scholar
  4. De Reyck, B., Herroelen, W.S. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations, European Journal of Operational Research 111:152–174.CrossRefGoogle Scholar
  5. Fitzsimmons, J.A., Fitzsimmons, M.J. (2004). Service Management: Operations, Strategy, Information Technology, McGraw-Hill, Boston.Google Scholar
  6. Franck, B., Neumann, K., Schwindt, C. (2001). Truncated branch-and-bound, schedule-construction, and schedule-improvement procedures for resource-constrained project scheduling, OR Spektrum 23:297–324.CrossRefMathSciNetGoogle Scholar
  7. Floudas, C.A., Lin, X. (2004). Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review, Computers and Chemical Engineering 28:2109–2129.CrossRefGoogle Scholar
  8. Fündeling, C.-U. (2005). Ressourcenbeschränkte Projektplanung bei gegebenen Arbeitsvolumina: Modellierung und Branch-and-Bound-Verfahren, Report WIOR-662, Institute for Economic Theory and Operations Research, University of Karlsruhe.Google Scholar
  9. Gentner, K. (2005). Dekompositionsverfahren für die ressourcenbeschränkte Projektplanung, Shaker, Aachen.Google Scholar
  10. Gentner, K., Neumann, K., Schwindt, C., Trautmann, N. (2004). Batch production scheduling in the process industries, in: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, J.Y-T. Leung, Chapman Hall/CRC Press, Boca Raton, pp. 48.1–48.21.Google Scholar
  11. Goldberg, A.V. (1997). An efficient implementation of a scaling minimum-cost flow algorithm, Journal of Algorithms 22:1–29.CrossRefMathSciNetGoogle Scholar
  12. Grötschel, M., Lovasz, L., Schrijver, A. (1995). Geometric Algorithms and Combinatorial Optimization, Springer, Berlin.Google Scholar
  13. Herroelen, W.S., Van Dommelen, P., Demeulemeester, E.L. (1997). Project network models with discounted cash flows: A guided tour through recent developments, European Journal of Operational Research 100:97–121.CrossRefGoogle Scholar
  14. Icmeli, O., Erengüç, S.S. (1996). A branch and bound procedure for the resource-constrained project scheduling problem with discounted cash flows, Management Science 42:1395–1408.Google Scholar
  15. Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results, Artificial Intelligence 143:151–188.CrossRefMathSciNetGoogle Scholar
  16. Mellentien, C. (2005). Präventive and reaktive Projektplanungsverfahren für ungewisse Projektumgebungen, Report WIOR-663, Institute for Economic Theory and Operations Research, University of Karlsruhe.Google Scholar
  17. Mellentien, C., Schwindt, C., Trautmann, N. (2004). Scheduling the factory pick-up of new cars, OR Spectrum 26:579–601.CrossRefMathSciNetGoogle Scholar
  18. Neumann, K., Schwindt, C. (2002). Project scheduling with inventory constraints, Mathematical Methods of Operations Research 56:513–533.MathSciNetGoogle Scholar
  19. Neumann, K., Zimmermann, J. (1999). Methods for resource-constrained project scheduling with regular and nonregular objective functions and schedule-dependent time windows, in: Project Scheduling: Recent Models, Algorithms, and Applications, J. Weglarz, ed, Kluwer, Boston, pp. 261–287.Google Scholar
  20. Neumann, K., Zimmermann, J. (2000). Procedures for resource levelling and net present value problems in project scheduling with general temporal and resource constraints, European Journal of Operational Research 127:425–443.CrossRefGoogle Scholar
  21. Neumann, K., Zimmermann, J. (2002). Exact and truncated branch-and-bound procedures for resource-constrained project scheduling with discounted cash flows and general temporal constraints, Central European Journal of Operations Research 10:357–380.MathSciNetGoogle Scholar
  22. Neumann, K., Nübel, H., Schwindt, C. (2000). Active and stable project scheduling, Mathematical Methods of Operations Research 52:441–465.CrossRefMathSciNetGoogle Scholar
  23. Neumann, K., Schwindt, C., Trautmann, N. (2002a). Advanced production scheduling for batch plants in process industries, OR Spectrum 24:251–279.CrossRefMathSciNetGoogle Scholar
  24. Neumann, K., Schwindt, C., Zimmermann, J. (2002b). Recent results on resource-constrained project scheduling with time windows: models, solution methods, and applications, Central European Journal of Operations Research 10:113–148.MathSciNetGoogle Scholar
  25. Neumann, K., Schwindt, C., Zimmermann, J. (2003a). Project Scheduling with Time Windows and Scarce Resources, Springer, Berlin.zbMATHGoogle Scholar
  26. Neumann, K., Schwindt, C., Zimmermann, J. (2003b). Order-based neighborhoods for project scheduling with nonregular objective functions, European Journal of Operational Research 149:325–343.CrossRefMathSciNetGoogle Scholar
  27. Neumann, K., Schwindt, C., Trautmann, N. (2005). Scheduling of continuous and discontinuous material flows with intermediate storage restrictions, European Journal of Operational Research 165:495–509.CrossRefGoogle Scholar
  28. Nübel, H. (1999). A branch-and-bound procedure for the resource investment problem subject to temporal constraints, Report WIOR-574, Institute for Economic Theory and Operations Research, University of Karlsruhe.Google Scholar
  29. Nübel, H. (2001). The resource renting problem subject to temporal constraints, OR Spektrum 23:359–381.CrossRefGoogle Scholar
  30. Russell, A.H. (1970). Cash flows in networks, Management Science 16:357–373.CrossRefGoogle Scholar
  31. Schwindt, C. (2000). Minimizing earliness-tardiness costs of resource-constrained projects, in: Operations Research Proceedings 1999, K. Inderfurth, G. Schwödiauer, W. Domschke, F. Juhnke, P. Kleinschmidt and G. Wäscher, eds, Springer, Berlin, pp. 402–407.Google Scholar
  32. Schwindt, C. (2005). Resource Allocation in Project Management, Springer, Berlin.Google Scholar
  33. Schwindt, C., Trautmann, N. (2000). Batch scheduling in process industries: An application of resource-constrained project scheduling, OR Spektrum 22:501–524.MathSciNetGoogle Scholar
  34. Schwindt, C., Trautmann, N. (2003). Scheduling the production of rolling ingots: Industrial context, model, and solution method, International Transactions in Operational Research 10:547–563.CrossRefMathSciNetGoogle Scholar
  35. Schwindt, C., Zimmermann, J. (2001). A steepest ascent approach to maximizing the net present value of projects, Mathematical Methods of Operations Research 53:435–450.CrossRefMathSciNetGoogle Scholar
  36. Selle, T., Zimmermann, J. (2003). A bidirectional heuristic for maximizing the net present value of large-scale projects subject to limited resources, Naval Research Logistics 50:130–148.CrossRefMathSciNetGoogle Scholar
  37. Vanhoucke, M., Demeulemeester, E.L., Herroelen, W.S. (2001). An exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem, Annals of Operations Research 102:179–196.CrossRefMathSciNetGoogle Scholar
  38. Weglarz, J. (Ed.) (1999). Project Scheduling: Recent Models, Algorithms, and Applications, Kluwer, Boston.Google Scholar
  39. Zimmermann, J. (2001). Ablauforientiertes Projektmanagement: Modelle, Verfahren und Anwendungen, Gabler, Wiesbaden.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Klaus Neumann
    • 1
  • Christoph Schwindt
    • 2
  • Jürgen Zimmermann
    • 2
  1. 1.University of KarlsruheGermany
  2. 2.Clausthal University of TechnologyGermany

Personalised recommendations