Selection and Scheduling of Pharmaceutical Research Projects

  • Rainer Kolisch
  • Konrad Meyer
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)


This paper deals with the lead optimization phase of pharmaceutical research where a number of leads (molecules as a basis for potential drugs) are processed by different departments in order to optimize their biochemical characteristics. We depict each lead as a project and model the problem as a static multi-project selection and scheduling problem under resource constraints with the objective to maximize the weighted work performed. For solving the problem we propose two heuristics. We assess their performance in a computational study and we point out one dominant method. Furthermore we show the impact of problem parameters such as the extend to which projects can be crashed.


Pharmaceutical R&D Lead Optimization Multi-Mode Resource-Constrained Project Scheduling Heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartusch, M., Möhring, R.H. and Radermacher, F.J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research 16:201–240.CrossRefMathSciNetGoogle Scholar
  2. Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research 112(1):3–41.CrossRefGoogle Scholar
  3. Coffin, M.A. and Taylor, B.W. (1996). R&D project selection and scheduling with a filtered beam search approach. HE Transactions 28:167–176.Google Scholar
  4. De Reyck, B., Demeulemeester, E. and Herroelen, W. (1998). Local search methods for the discrete time/resource trade-off problem in project networks. Naval Research Logistics 45:553–578.CrossRefMathSciNetGoogle Scholar
  5. Drexl, A., Juretzka, J., Salewski, F. and Schirmer, A. (1999). New modelling concepts and their impact on resource-constrained project scheduling, in: Project Scheduling — Recent Models, Algorithms and Applications Weglarz, J., ed, Kluwer Academic Publishers, Boston, pp. 413–432.Google Scholar
  6. Fox, G.E., Baker, N.R. and Bryant, J.L. (1984). Economic models for R and D project selection in the presence of project interactions. Management Science 30(7):890–902.Google Scholar
  7. Heidenberger, K. (1996). Dynamic project selection and funding under risk: A decision tree based MILP approach. European Journal of Operational Research 95:284–298.CrossRefGoogle Scholar
  8. Heilmann, R. (2001). Resource-constrained project scheduling: A heuristic for the multi-mode case. OR Spektrum 23:335–357.CrossRefMathSciNetGoogle Scholar
  9. Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research 90:320–333.CrossRefGoogle Scholar
  10. Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis, in: Project Scheduling — Recent Models, Algorithms and Applications, J. Weglarz, ed, Kluwer Academic Publishers, Boston, pp. 147–178.Google Scholar
  11. Kolisch, R., Meyer, K., Mohr, R., Schwindt, C. and Urmann, M. (2003). Ablauf-planung für die Leitstrukturoptimierung in der Pharmaforschung. Zeitschrift für Betriebswirtschaft 73(8):825–848.Google Scholar
  12. Leon, V.J. and Ramamoorthy, B. (1995). Strength and adaptability of problem-space based neighborhoods for resource-constrained scheduling. OR Spek-trum 17(2/3):173–182.CrossRefGoogle Scholar
  13. Loch, C.H. and Bode-Greuel, K. (2001). Evaluating growth options as sources of value for pharmaceutical resrearch projects. R&D Management 31(2):231–248.CrossRefGoogle Scholar
  14. Luh, P.B., Liu, F. and Moser, B. (1999). Scheduling of design projects with uncertain number of iterations. European Journal of Operational Research 113:575–592.CrossRefGoogle Scholar
  15. Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1):3–30.CrossRefGoogle Scholar
  16. Naphade, K.S., Wu, S.D. and Storer, R.H. (1997). Problem space search algorithms for resource-constrained project scheduling. Annals of Operations Research 70:307–326.CrossRefGoogle Scholar
  17. Neumann, K., Schwindt, C. and Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources. Springer, 2. edition.Google Scholar
  18. Patterson, J.H., Slowiński, R., Talbot, KB. and Weglarz, J. (1990). Computational experience with a backtracking algorithm for solving a general class of precedence and resource-constrained scheduling problems. European Journal of Operational Research 49:68–79.CrossRefGoogle Scholar
  19. Salewski, F., Schirmer, A. and Drexl, A. (1997). Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application. European Journal of Operational Research 102:88–110.CrossRefGoogle Scholar
  20. Schöffski, O., Fricke, F.-U., Guminski, W. and Hartmann, W., editors (2002). Pharmabetriebslehre, Springer.Google Scholar
  21. Sprecher, A. and Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European Journal of Operational Research 107(2):431–450.CrossRefGoogle Scholar
  22. Storer, R.H., Wu, S.D. and Vaccari, R. (1992). New search spaces for sequencing problems with application to job shop scheduling. Management Science 38(10):1495–1509.Google Scholar
  23. Talbot, F.B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science 28(10): 1197–1210.Google Scholar
  24. Taylor, B.W., Moore, L.J. and Clayton, E.R. (1982). R&D project selection and manpower allocation with integer nonlinear goal programming. Management Science 28(10):1149–1158.CrossRefGoogle Scholar
  25. Venkatraman, R. and Venkatraman, S. (1995). R&D project selection and scheduling for organizations facing product obsolescence. R&D Management 25(1):57–70.MathSciNetGoogle Scholar
  26. Viswanadham, N. and Narahari, Y. (2001). Queueing network modelling and lead time compression of pharmaceutical drug development. International Journal of Production Research 39(2):395–412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Rainer Kolisch
    • 1
  • Konrad Meyer
    • 2
  1. 1.Technology-based Services & Operations Management, TUM Business SchoolTechnical University of MunichGermany
  2. 2.A.T. KearneyFrankfurtGermany

Personalised recommendations