Advertisement

Population Learning Algorithm for the Resource-Constrained Project Scheduling

  • Piotr Jedrzejowicz
  • Ewa Ratajczak
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)

Abstract

The paper proposes applying the population-learning algorithm to solving both the single-mode and the multi-mode resource-constrained pro-ject scheduling problems (denoted as RCPSP and MRCPSP, respectively) with makespan minimization as an objective function. The paper contains problem formulation and a description of the proposed implementation of the population learning algorithm (PLA). To validate the approach a computational experiment has been carried out. It has involved 1440 instances of the RCPSP and 3842 instances of the MRCPSP obtained from the available benchmark data sets. Results of the experiment show that the proposed PLA implementation is an effective tool for solving the resource-constrained project scheduling problems. In case of the RCPSP instances the algorithm in a single run limited to 50000 solutions generated has produced results close to the results of the best known algorithms as compared with average deviation from critical path. In case of the MRCPSP instances the proposed algorithm in a single run has produced solutions with mean relative error value below 1.6% as compared with optimal or best known solutions for benchmark problems.

Keywords

Project scheduling RCPSP MRCPSP Population Learning Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blazewicz, J., Lenstra, J. and Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics 5:11–24.CrossRefMathSciNetGoogle Scholar
  2. Czarnowski, I., Forkiewicz, M., Jedrzejowicz, P., Ratajczak, E., Skakowski, A. and Wierzbowska, I. (2001). Population-based scheduling on multiple processors, in: Proc. 4th Metaheuristics Internetional Conference, MIC 2001, Porto, Portugal, pp. 613–618.Google Scholar
  3. Czarnowski, I., Gutjahr, W.J, Jedrzejowicz, P., Ratajczak, E., Skakowski, A. and Wierzbowska, I. (2001). Scheduling multiprocessor tasks in presence of the correlated failures, in: The Proceedings of the Second International Workshop on Soft Computing Applied to Software Engineering, SCASE, Enschede, The Netherlands.Google Scholar
  4. Czarnowski, I., Jedrzejowicz, P. and Ratajczak, E. (2001). Population Learning Algorithm-example implementations and experiments, in: Proc. 4th Metaheuristics Internetional Conference, MIC 2001, Porto, Portugal, pp. 607–612.Google Scholar
  5. Davis, E.W. and Heidorn, G.E. (1971). An algorithm for optimal project scheduling under multiple resource constraints, Management Science, 17:B803–B816.CrossRefGoogle Scholar
  6. Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M. (2004). A Hybrid Scatter Search / Electromagnetism Meta-Heuristic for Project Scheduling, Univeriteit Gent, Faculteit Ekonomie en Bedrijfskunde Working Paper 04/237.Google Scholar
  7. Debels, D. and Vanhoucke, M. (2005). A Bi-Population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem, Univeriteit Gent, Faculteit Ekonomie en Bedrijfskunde Working Paper 05/294.Google Scholar
  8. Hartmann, S. (2001). Project Scheduling with Multiple Modes: A Genetic Algorithm, Annals of Operations Research 102:11–135.CrossRefMathSciNetGoogle Scholar
  9. Hartmann, S. and Drexl, A. (1998). Project Scheduling with Multiple Modes: A Comparison of Exact Algorithms, Networks 32:283–297.CrossRefMathSciNetGoogle Scholar
  10. Hartmann, S. and Kolisch, R. (1999). Heuristic Algorithms for Solving the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis, in: Project scheduling: Recent models, algorithms and applications, J. Weglarz, ed, Kluwer, Amsterdam, pp. 147–178.Google Scholar
  11. Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem, European Journal of Operational Research 127:394–407.CrossRefGoogle Scholar
  12. Hartmann, S. and Kolisch, R. (2005). Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update, European Journal of Operational Research, to apopear.Google Scholar
  13. Jedrzejowicz, P. (1999). Social Learning Algorithm as a Tool for Solving Some Difficult Scheduling Problems, Foundation of Computing and Decision Sciences, 24(2):51–66.MathSciNetGoogle Scholar
  14. Jedrzejowicz, J. and Jedrzejowicz, P. (2002). Permutation Scheduling Using Population Learning Algorithm, in: Knowledge-Based Itelligent Information Engineering Systems and Allied Technologies, E. Damiani et al, eds, IOS Press, Amsterdam, pp. 93–97.Google Scholar
  15. Jedrzejowicz, P. and Skakowski, A. (2000). An island-based evolutionary algorithm for scheduling multiple-variant tasks, Proceedings of ICSC Symposium Engineering of Intelligent Systems — EEIS’2000, ICSC Academic Press, Paisley, pp. 1–9.Google Scholar
  16. Jozefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J. (2001). Simulated annealing for multi-mode resource-constrained project scheduling, Annals of Operations Research, 102:137–155.CrossRefMathSciNetGoogle Scholar
  17. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin.Google Scholar
  18. Moscato, P. (1999). Memetic Algorithms: A short introduction, in: New Ideas in Optimization, D. Corne, M. Dorigo, F. Glover, eds., McGraw-Hill, New York, pp. 219–234.Google Scholar
  19. Nonobe, K. and Ibaraki T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem, in: Essays and Surveys in Metaheuristics, C.C. Ribeiro and P. Hansen, eds., Kluwer Academic Publishers, pp. 557–588.Google Scholar
  20. Reynolds R.G. (1994). An Introduction to Cultural Algorithms, in: Proceedings of the Third Annual Conference on Evolutionary Programming, A.V. Sebald, L.J. Fogel, eds., World Scientific, River Edge, pp. 131–139.Google Scholar
  21. Sprecher, A. and Drexl, A. (1998). Solving multi-mode resource-constrained project scheduling problems by a simple, general and powerful sequencing algorithm, European Journal of Operational Research 107:431–450.CrossRefGoogle Scholar
  22. Valls, V., Ballestin F., and Quintanilla, S. (2004). A Population-Based Approach to the Resource-Constrained Project Scheduling Problem, Annals of Operations Research 131:305–324.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Piotr Jedrzejowicz
    • 1
  • Ewa Ratajczak
    • 1
  1. 1.Department of Information SystemsGdynia Maritime UniversityPoland

Personalised recommendations