Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnihotri NT, Hawkins RD, Kandel ER, Kentros C (2004). The long-term stability of new hippocampal place fields requires new protein synthesis. Proc Natl Acad Sci USA 101:3656–3661.

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994). Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Bottai D, Guzowski JF, Schwarz MK, Kang SH, Xiao B, Lanahan A, Worley PF, Seeburg PH (2002). Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate-early gene expression. J Neurosci 22:167–175.

    PubMed  CAS  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997). Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288.

    Article  PubMed  CAS  Google Scholar 

  • Chawla MK, Lin G, Olson K, Vazdarjanova A, Burke SN, McNaughton BL, Worley PF, Guzowski JF, Roysam B, Barnes CA (2004). 3D-catFISH: a system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization. J Neurosci Methods 139:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476.

    Article  PubMed  CAS  Google Scholar 

  • Dudai Y (1997). Time to remember. Neuron 18:179–182.

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Frankland PW, Bontempi B (2005). The organization of recent and remote memories. Nat Rev Neurosci 6:119–130.

    Article  PubMed  CAS  Google Scholar 

  • Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996). Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci 16:823–835.

    PubMed  CAS  Google Scholar 

  • Guzowski JF (2002). Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12:86–104.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Worley PF (2001). Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). In: Current Protocols in Neuroscience, pp. 1.8.1–1.8.16: John Wiley & Sons, Inc.

    Google Scholar 

  • Guzowski JF, Knierim JJ, Moser EI (2004). Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44:581–584.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001.

    PubMed  CAS  Google Scholar 

  • Hess US, Lynch G, Gall CM (1995). Changes in c-fos mRNA expression in rat brain during odor discrimination learning: differential involvement of hippocampal subfields CA1 and CA3. J Neurosci 15:4786–4795.

    PubMed  CAS  Google Scholar 

  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669.

    Article  PubMed  CAS  Google Scholar 

  • Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280:2121–2126.

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Lee I, Gilbert P (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci 15:333–351.

    PubMed  Google Scholar 

  • Klann E, Antion MD, Banko JL, Hou L (2004). Synaptic plasticity and translation initiation. Learn Mem 11:365–372.

    Article  PubMed  Google Scholar 

  • Kubie JL, Ranck JBJ (1983). Sensory-behavioral correlates in individual hippocampal neurons in three situations: space and context. In: Neurobiology of the Hippocampus (Seifert W, ed.), pp. 433–447. New York: Academic Press.

    Google Scholar 

  • Lanahan A, Worley P (1998). Immediate-early genes and synaptic function. Neurobiol Learn Mem 70:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004). Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430:456–459.

    Article  PubMed  CAS  Google Scholar 

  • Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI (2004). Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1. Science.

    Google Scholar 

  • Lin G, Chawla MK, Olson K, Guzowski JF, Barnes CA, Roysam B (2005). Hierarchical, model-based merging of multiple fragments for improved three-dimensional segmentation of nuclei. Cytometry A 63:20–33.

    PubMed  Google Scholar 

  • Link W, Konietsko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995). Somatodendritic expression of an immediate-early gene is regulated by synaptic activity. Proc Natl Acad Sci USA 92(12):5734–5738.

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538.

    Article  PubMed  CAS  Google Scholar 

  • Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA (1995). Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 15:7079–7094.

    PubMed  CAS  Google Scholar 

  • Marr D (1971). Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262:23–81.

    PubMed  CAS  Google Scholar 

  • McClelland JL, Goddard NH (1996). Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6:654–665.

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (2000). Memory—a century of consolidation. Science 287:248–251.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Nadel L (1990). Hebb-Marr networks and the neurobiological representation of action in space. In: Neuroscience and Connectionist Theory (Gluck MA, Rumelhart DE, eds), pp. 1–64. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987). Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197.

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Moscovitch M (2001). The hippocampal complex and long-term memory revisited. Trends Cogn Sci 5:228–230.

    Article  PubMed  Google Scholar 

  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004). NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5:361–372.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.

    Google Scholar 

  • O’Reilly RC, Rudy JW (2001). Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108:311–345.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro S, Nicolelis MA (2004). Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11:686–696.

    Article  PubMed  Google Scholar 

  • Rolls ET, Treves A (1998). Neural Networks and Brain Function. Oxford: Oxford University Press.

    Google Scholar 

  • Skaggs WE, McNaughton BL (1992). Computational approaches to hippocampal function. Curr Opin Neurobiol 2:209–211.

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Knowlton BJ (1994). Memory, hippocampus, and brain systems. In: The Cognitive Neurosciences (Gazzaniga M, ed.), pp. 825–837. Cambridge: MIT Press.

    Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR, McNaughton B (2000). Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10:180–186.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Eichenbaum H (2000). The neurophysiology of memory. Ann NY Acad Sci 911:175–191.

    Article  PubMed  CAS  Google Scholar 

  • Thompson LT, Best PJ (1990). Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res 509:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Tischmeyer W, Grimm R (1999). Activation of immediate early genes and memory formation. Cell Mol Life Sci 55:564–574.

    Article  PubMed  CAS  Google Scholar 

  • Tolman EC (1932). Purposive Behavior in Animals and Men. New York: Century.

    Google Scholar 

  • Treves A, Rolls ET (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391.

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova A, Guzowski JF (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24:6489–6496.

    Article  PubMed  CAS  Google Scholar 

  • Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, Guzowski JF (2002). Experience-dependent coincident expression of the effector immediate-early genes Arc and Homer 1a in hippocampal and neocortical neuronal networks. J Neurosci 22:10067–10071.

    PubMed  CAS  Google Scholar 

  • Vinogradova OS (2001). Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11:578–598.

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, McNaughton BL (1993). Dynamics of the hippocampal ensemble code for space. Science 261(5124):1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Wood ER, Dudchenko PA, Eichenbaum H (1999). The global record of memory in hippocampal neuronal activity. Nature 397:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Tu JC, Worley PF (2000). Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10:370–374.

    Article  PubMed  CAS  Google Scholar 

  • Young BJ, Fox GD, Eichenbaum H (1994). Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task. J Neurosci 14:6553–6563.

    PubMed  CAS  Google Scholar 

  • Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003). Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789.

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR (1993). Neuroanatomy of memory. Annu Rev Neurosci 16:547–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Guzowski, J.F. (2006). Immediate Early Genes and the Mapping of Environmental Representations in Hippocampal Neural Networks. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_9

Download citation

Publish with us

Policies and ethics