Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005). Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983–997.

    Article  PubMed  CAS  Google Scholar 

  • Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D (2004). Evidence for GABA mediated control of hypocretin-but not MCH-immunoreactive neurons during sleep in rats. J Physiol 563:569–582.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886.

    PubMed  CAS  Google Scholar 

  • Baker FC, Shah S, Stewart D, Angara C, Gong H, Szymusiak R, Opp MR, McGinty D (2004). Interleukin 1β enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 288:R998–R1005.

    PubMed  Google Scholar 

  • Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE (2004). Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci 19:376–386.

    Article  PubMed  Google Scholar 

  • Barth AL, Gerkin RC, Dean KL (2004). Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci 24:6466–6475.

    Article  PubMed  CAS  Google Scholar 

  • Basheer R, Shiromani PJ (2001). Effects of prolonged wakefulness on c-fos and AP1 activity in young and old rats. Brain Res Mol Brain Res 89:153–157.

    Article  PubMed  CAS  Google Scholar 

  • Basheer R, Magner M, McCarley RW, Shiromani PJ (1998). REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Brain Res Mol Brain Res 57:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Basheer R, Porkka-Heiskanen T, Stenberg D, McCarley RW (1999). Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res 73:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bayer L, Eggermann E, Serafin M, Grivel J, Machard D, Mühlethaler M, Jones BE (2005). Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 130:807–811.

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M, Grassi-Zucconi G (1999). Immediate early gene expression in sleep and wakefulness. In: Handbook of Behavioral State Control. Cellular and Molecular Mechanisms (Lydic R, Baghdoyan HA, eds), pp. 235–253. Boca Raton: CRC Press.

    Google Scholar 

  • Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi P-H (2002). The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16:1959–1973.

    Article  PubMed  Google Scholar 

  • Bubser M, Fadel JR, Jackson LL, Meador-Woodruff JH, Jing D, Deutch AY (2005). Dopaminergic regulation of orexin neurons. Eur J Neurosci 21:2993–3001.

    Article  PubMed  Google Scholar 

  • Chen T, Dong YX, Li YQ (2003). Fos expression in serotonergic neurons in the rat brainstem following noxious stimuli: an immunohistochemical double-labelling study. J Anat 203:579–588.

    Article  PubMed  Google Scholar 

  • Cherubini E, North RA, Williams JT (1988). Synaptic potentials in rat locus coeruleus neurones. J Physiol 406:431–442.

    PubMed  CAS  Google Scholar 

  • Chinenov Y, Kerppola TK (2001). Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20:2438–2452.

    Article  PubMed  CAS  Google Scholar 

  • Chu M, Huang Z-L, Qu W-M, Eguchi N, Yao M-H, Urade Y (2004). Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res 49:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (2000a). Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321.

    Article  PubMed  CAS  Google Scholar 

  • Cirelli C, Tononi G (2000b). On the functional significance of c-fos induction during the sleep-waking cycle. Sleep 23:453–469.

    PubMed  CAS  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1995a). Sleep deprivation and c-fos expression in the rat brain. J Sleep Res 4:92–106.

    PubMed  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Cirelli C, Pompeiano M, Arrighi P, Tononi G (1995b). Sleep-waking changes after c-fos antisense injections in the medial preoptic area. Neuroreport 6:801–805.

    PubMed  CAS  Google Scholar 

  • Collaco AM, Geusz ME (2003). Monitoring immediate-early gene expression through firefly luciferase imaging of HRS/J hairless mice. BMC Physiol 3:8.

    Article  PubMed  Google Scholar 

  • Deurveilher S, Huang Z-L, Semba K, Hayaishi O (2005). Behavioral and neuronal activation following systemic injection of the adenosine A2A receptor antagonist MSX-3 in rats. Sleep Suppl 28:41.

    Google Scholar 

  • Deurveilher S, Lo H, Murphy JA, Burns J, Semba K (in press). Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats.

    Google Scholar 

  • Dragunow M, Faull R (1989). The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi K, Satoh T (1980a). Characterization of the neurons in the region of solitary tract nucleus during sleep. Physiol Behav 24:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi K, Satoh T (1980b). Convergence of sleep-wakefulness subsystems onto single neurons in the region of cat’s solitary tract nucleus. Arch Ital Biol 118:331–345.

    PubMed  CAS  Google Scholar 

  • España RA, Valentino RJ, Berridge CW (2003). Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121:201–217.

    Article  PubMed  CAS  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001). Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662.

    PubMed  CAS  Google Scholar 

  • Fadel J, Bubser M, Deutch AY (2002). Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J Neurosci 22:6742–6746.

    PubMed  CAS  Google Scholar 

  • Farivar R, Zangenehpour S, Chaudhuri A (2004). Cellular-resolution activity mapping of the brain using immediate-early gene expression. Front Biosci 9:104–109.

    PubMed  CAS  Google Scholar 

  • Finkbeiner S, Greenberg ME (1998). Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37:171–189.

    Article  PubMed  CAS  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi P-H, Rossier J, Audinat E, Mühlethaler M, Serafin M (2000). Identification of sleep-promoting neurons in vitro. Nature 404:992–995.

    Article  PubMed  CAS  Google Scholar 

  • Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB (2002). Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, Yanagisawa M, Nestler EJ, DiLeone RJ (2003). Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111.

    PubMed  CAS  Google Scholar 

  • Gong H, Szymusiak R, King J, Steininger T, McGinty D (2000). Sleep-related c-Fos protein expression in the preoptic hypothalamus: effects of ambient warming. Am J Physiol Regul Integr Comp Physiol 279:R2079–R2088.

    PubMed  CAS  Google Scholar 

  • Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004). Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556:935–946.

    Article  PubMed  CAS  Google Scholar 

  • Goutagny R, Luppi P-H, Salvert D, Gervasoni D, Fort P (2005). GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle. Neuroreport 16:1069–1073.

    Article  PubMed  CAS  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999). Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Grassi-Zucconi G, Menegazzi M, Carcereri De Prati A, Vescia S, Ranucci G, Bentivoglio M (1994). Different programs of gene expression are associated with different phases of the 24h and sleep-wake cycles. Chronobiologia 21:93–97.

    PubMed  CAS  Google Scholar 

  • Greco MA, Lu J, Wagner D, Shiromani PJ (2000). c-Fos expression in the cholinergic basal forebrain after enforced wakefulness and recovery sleep. Neuroreport 11:437–440.

    PubMed  CAS  Google Scholar 

  • Grivel J, Cvetkovic V, Bayer L, Machard D, Tobler I, Mühlethaler M, Serafin M (2005). The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation. J Neurosci 25:4127–4130.

    Article  PubMed  CAS  Google Scholar 

  • Gvilia I, Angara C, McGinty D, Szymusiak R (2005). Different neuronal populations of the rat median preoptic nucleus express c-fos during sleep and in response to hypertonic saline or angiotensin-II. J Physiol 569:587–599.

    Article  PubMed  CAS  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005). A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559.

    Article  PubMed  CAS  Google Scholar 

  • Harthoorn LF, Sañe A, Nethe M, Van Heerikhuize JJ (2005). Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol 25:1209–1223.

    Article  PubMed  Google Scholar 

  • Herdegen T, Leah JD (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GE, Lyo D (2002). Anatomical markers of activity in neuroendocrine systems: are we all ‘Fos-ed out’? J Neuroendocrinol 14:259–268.

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995). Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178.

    PubMed  CAS  Google Scholar 

  • Inglis WL, Semba K (1996). Colocalization of ionotropic glutamate receptor subunits with NADPHdiaphorase-containing neurons in the rat mesopontine tegmentum. J Comp Neurol 368:17–32.

    Article  PubMed  CAS  Google Scholar 

  • Janušonis S, Fite KV (2001). Diurnal variation of c-Fos expression in subdivisions of the dorsal raphe nucleus of the Mongolian gerbil (Meriones unguiculatus). J Comp Neurol 440:31–42.

    Article  PubMed  Google Scholar 

  • Jasper HH, Tessier J (1971). Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–602.

    Article  PubMed  CAS  Google Scholar 

  • Jones BE (2005). From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26:578–586.

    Article  PubMed  CAS  Google Scholar 

  • Jouvet M (1962). Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100:125–206.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L (2002). c-Fos in learning: beyond the mapping of neuronal activity. In: Handbook of Chemical Neuroanatomy, vol. 19: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction (Kaczmarek L, Robertson HJ, eds), pp. 189–215. Amsterdam: Elsevier Science.

    Google Scholar 

  • Ko EM, Estabrooke IV, McCarthy M, Scammell TE (2003). Wake-related activity of tuberomammillary neurons in rats. Brain Res 992:220–226.

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y, Hayaishi O (1994). Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep. Neurosci Res 19:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005a). Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720.

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Manns ID, Alonso A, Jones BE (2004). Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J Neurophysiol 92:1182–1198.

    Article  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005b). Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365–4369.

    Article  PubMed  CAS  Google Scholar 

  • Lee RS, Steffensen SC, Henriksen SJ (2001). Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci 21:1757–1766.

    PubMed  CAS  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899.

    Article  PubMed  CAS  Google Scholar 

  • Levine ES, Jacobs BL (1992). Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic studies in the awake cat. J Neurosci 12:4037–4044.

    PubMed  CAS  Google Scholar 

  • Li Y, Gao XB, Sakurai T, van den Pol AN (2002). Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–1181.

    Article  PubMed  CAS  Google Scholar 

  • Lin J-S, Hou Y, Jouvet M (1996). Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci USA 93:14128–14133.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Chou TC, Saper CB (2006). Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Greco MA, Shiromani P, Saper CB (2000). Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842.

    PubMed  CAS  Google Scholar 

  • Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002). Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22:4568–4576.

    PubMed  CAS  Google Scholar 

  • Lydic R, Baghdoyan HA (1999). Handbook of Behavioural State Control. Cellular and Molecular Mechanisms. Boca Raton: CRC Press.

    Google Scholar 

  • Maloney KJ, Mainville L, Jones BE (1999). Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19:3057–3072.

    PubMed  CAS  Google Scholar 

  • Maloney KJ, Mainville L, Jones BE (2000). c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 20:4669–4679.

    PubMed  CAS  Google Scholar 

  • Maloney KJ, Mainville L, Jones BE (2002). c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15:774–778.

    Article  PubMed  Google Scholar 

  • MartÍnez GS, Smale L, Nunez AA (2002). Diurnal and nocturnal rodents show rhythms in orexinergic neurons. Brain Res 955:1–7.

    Article  PubMed  Google Scholar 

  • McGinty DJ, Harper RM (1976). Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575.

    Article  PubMed  CAS  Google Scholar 

  • Menegazzi M, Carcereri De Prati AC, Zucconi GG (1994). Differential expression pattern of jun B and c-jun in the rat brain during the 24-h cycle. Neurosci Lett 182:295–298.

    Article  PubMed  CAS  Google Scholar 

  • Merchant-Nancy H, Vazquez J, Garcia F, Drucker-Colin R (1995). Brain distribution of c-fos expression as a result of prolonged rapid eye movement (REM) sleep period duration. Brain Res 681:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Meynard MM, Valdés JL, Recabarren M, Serón-Ferré M, Torrealba F (2005). Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav Brain Res 158:311–319.

    Article  PubMed  CAS  Google Scholar 

  • Miklós IH, Kovács KJ (2003). Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 18:3069–3079.

    Article  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798.

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983). Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2004). GABAergic neurons with α 2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 129:803–810.

    Article  PubMed  CAS  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2005). Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816.

    Article  PubMed  Google Scholar 

  • Morales FR, Sampogna S, Yamuy J, Chase MH (1999). c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat. J Neurosci 19:9508–9518.

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991). Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451.

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K (1999). Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Murphy JA, Deurveilher S, Semba K (2003). Stimulant doses of caffeine induce c-Fos activation in orexin/hypocretin-containing neurons in rat. Neuroscience 121:269–275.

    Article  PubMed  CAS  Google Scholar 

  • Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002). The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984.

    Article  PubMed  CAS  Google Scholar 

  • Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M (2003). The α 2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98:428–436.

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Kelz MB, Chen J (1999). ΔFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res 835:10–17.

    Article  PubMed  CAS  Google Scholar 

  • Niimi M, Sato M, Taminato T (2001). Neuropeptide Y in central control of feeding and interactions with orexin and leptin. Endocrine 14:269–273.

    Article  PubMed  CAS  Google Scholar 

  • Nitz D, Siegel J (1997a). GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273:R451–455.

    PubMed  CAS  Google Scholar 

  • Nitz D, Siegel JM (1997b). GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78:795–801.

    Article  PubMed  CAS  Google Scholar 

  • Novak CM, Smale L, Nunez AA (2000). Rhythms in Fos expression in brain areas related to the sleep-wake cycle in the diurnal Arvicanthis niloticus. Am J Physiol Regul Integr Comp Physiol 278:R1267–1274.

    PubMed  CAS  Google Scholar 

  • O’Hara BF, Young KA, Watson FL, Heller HC, Kilduff TS (1993). Immediate early gene expression in brain during sleep deprivation: preliminary observations. Sleep 16:1–7.

    PubMed  CAS  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605.

    PubMed  CAS  Google Scholar 

  • Peterfi Z, Churchill L, Hajdu I, Obal Jr F, Krueger JM, Parducz A (2004). Fos-immunoreactivity in the hypothalamus: dependency on the diurnal rhythm, sleep, gender, and estrogen. Neuroscience 124:695–707.

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Cirelli C, Tononi G (1994). Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGFI-A mRNA and protein. J Sleep Res 3:80–96.

    Article  PubMed  Google Scholar 

  • Pompeiano M, Cirelli C, Ronca-Testoni S, Tononi G (1997). NGFI-A expression in the rat brain after sleep deprivation. Brain Res Mol Brain Res 46:143–153.

    Article  PubMed  CAS  Google Scholar 

  • Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE, Turek FW, Stenberg D (1995). Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 268:R1456–1463.

    PubMed  CAS  Google Scholar 

  • Portas CM, Bjorvatn B, Fagerland S, Grønli J, Mundal V, Sørensen E, Ursin R (1998). On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83:807–814.

    Article  PubMed  CAS  Google Scholar 

  • Pose I, Sampogna S, Chase MH, Morales FR (2000). Cuneiform neurons activated during cholinergically induced active sleep in the cat. J Neurosci 20:3319–3327.

    PubMed  CAS  Google Scholar 

  • Sanchez R, Leonard CS (1996). NMDA-receptor-mediated synaptic currents in guinea pig laterodorsal tegmental neurons in vitro. J Neurophysiol 76:1101–1111.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Sisson JC, Verma IM (1988). Transcriptional autoregulation of the proto-oncogene fos. Nature 334:314–319.

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Matsumura H, Nakajima T, Nakahama K, Kanbayashi T, Nishino S, Yoneda H, Shigeyoshi Y (2003). Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur J Neurosci 17:1635–1645.

    Article  PubMed  Google Scholar 

  • Satoh S, Matsumura H, Fujioka A, Nakajima T, Kanbayashi T, Nishino S, Shigeyoshi Y, Yoneda H (2004). FOS expression in orexin neurons following muscimol perfusion of preoptic area. Neuroreport 15:1127–1131.

    Article  PubMed  CAS  Google Scholar 

  • Scammell T, Gerashchenko D, Urade Y, Onoe H, Saper CB, Hayaishi O (1998). Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc Natl Acad Sci USA 95:7754–7759.

    Article  PubMed  CAS  Google Scholar 

  • Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB (2000). Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20:8620–8628.

    PubMed  CAS  Google Scholar 

  • Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, Saper CB, Urade Y, Hayaishi O (2001). An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107:653–663.

    Article  PubMed  CAS  Google Scholar 

  • Semba K (1999). The mesopontine cholinergic system: a dual role in REM sleep and wakefulness. In: Handbook of Behavioral State Control. Cellular and Molecular Mechanisms (Lydic R, Baghdoyan H, eds), pp. 161–180. Boca Raton: CRC Press.

    Google Scholar 

  • Semba K, Pastorius J, Wilkinson M, Rusak B (2001). Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behav Brain Res 120:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Sherin J, Shiromani P, McCarley R, Saper C (1996). Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219.

    PubMed  CAS  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998). Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721.

    PubMed  CAS  Google Scholar 

  • Shiromani PJ, Winston S, McCarley RW (1996). Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res 38:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Shiromani PJ, Basheer R, Thakkar J, Wagner D, Greco MA, Charness ME (2000). Sleep and wakefulness in c-fos and fos B gene knockout mice. Brain Res Mol Brain Res 80:75–87.

    Article  PubMed  CAS  Google Scholar 

  • Shouse MN, Staba RJ, Saquib SF, Farber PR (2000). Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 860:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW (2002). Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113:663–670.

    Article  PubMed  CAS  Google Scholar 

  • Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D (2002). Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 543:665–677.

    Article  PubMed  CAS  Google Scholar 

  • Sved AF, Cano G, Passerin AM, Rabin BS (2002). The locus coeruleus, Barrington’s nucleus, and neural circuits of stress. Physiol Behav 77:737–742.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak R, McGinty D (1986). Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 370:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak R, Alam N, Steininger T, McGinty D (1998). Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803:178–188.

    Article  PubMed  CAS  Google Scholar 

  • Takase LF, Nogueira MI, Baratta M, Bland ST, Watkins LR, Maier SF, Fornal CA, Jacobs BL (2004). Inescapable shock activates serotonergic neurons in all raphe nuclei of rat. Behav Brain Res 153:233–239.

    Article  PubMed  Google Scholar 

  • Takase LF, Nogueira MI, Bland ST, Baratta M, Watkins LR, Maier SF, Fornal CA, Jacobs BL (2005). Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behav Brain Res 162:299–306.

    Article  PubMed  CAS  Google Scholar 

  • Terao A, Greco MA, Davis RW, Heller HC, Kilduff TS (2003). Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 120:1115–1124.

    Article  PubMed  CAS  Google Scholar 

  • Terao A, Wisor JP, Peyron C, Apte-Deshpande A, Wurts SW, Edgar DM, Kilduff TS (2006). Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip® study. Neuroscience 137:593–605.

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Pompeiano M, Cirelli C (1994). The locus coeruleus and immediate-early genes in spontaneous and forced wakefulness. Brain Res Bull 35:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Torterolo P, Sampogna S, Morales FR, Chase MH (2002). Gudden’s dorsal tegmental nucleus is activated in carbachol-induced active (REM) sleep and active wakefulness. Brain Res 944:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2000). GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep. Brain Res 884:68–76.

    Article  PubMed  CAS  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001a). Hypothalamic neurons that contain hypocretin (orexin) express c-fos during active wakefulness and carbachol-induced active sleep. Sleep Res Online 4:25–32.

    Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001b). GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep. Brain Res 892:309–319.

    Article  PubMed  CAS  Google Scholar 

  • Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2003). Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 26:25–28.

    PubMed  Google Scholar 

  • Trulson ME, Preussler DW (1984). Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83:367–377.

    PubMed  CAS  Google Scholar 

  • Valdés JL, Farías P, Ocampo-Garcés A, Cortés N, Serón-Ferré M, Torrealba F (2005). Arousal and differential Fos expression in histaminergic neurons of the ascending arousal system during a feeding-related motivated behaviour. Eur J Neurosci 21:1931–1942.

    Article  PubMed  Google Scholar 

  • van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK (2004). Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:635–652.

    Article  PubMed  Google Scholar 

  • Vanni-Mercier G, Gigout S, Debilly G, Lin J-S (2003). Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 144:227–241.

    Article  PubMed  CAS  Google Scholar 

  • Verret L, Léger L, Fort P, Luppi P-H (2005). Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 21:2488–2504.

    Article  PubMed  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi P-H (2003). A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19.

    Article  PubMed  Google Scholar 

  • Wagner D, Salin-Pascual R, Greco M, Shiromani P (2000). Distribution of hypocretin-containing neurons in the lateral hypothalamus and c-fos-immunoreactive neurons in the VLPO. Sleep Research Online 3:35–42.

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003). Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303:120–129.

    Article  PubMed  CAS  Google Scholar 

  • Yamatodani A, Mochizuki T, Mammoto T (1996). New vistas on histamine arousal hypothesis: microdialysis study. Meth Find Exp Clin Pharmacol 18(Suppl A):113–117.

    Google Scholar 

  • Yamuy J, Mancillas JR, Morales FR, Chase MH (1993). c-fos expression in the pons and medulla of the cat during carbachol-induced active sleep. J Neurosci 13:2703–2718.

    PubMed  CAS  Google Scholar 

  • Yamuy J, Sampogna S, Morales FR, Chase MH (1998). c-fos expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study. Sleep Res Online 1:28–40.

    PubMed  CAS  Google Scholar 

  • Yamuy J, Ramos O, Torterolo P, Sampogna S, Chase MH (2005). The role of tropomyosin-related kinase receptors in neurotrophin-induced rapid eye movement sleep in the cat. Neuroscience 135:357–369.

    Article  PubMed  CAS  Google Scholar 

  • Yamuy J, Sampogna S, López-Rodríguez F, Luppi P-H, Morales FR, Chase MH (1995). Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study. Neuroscience 67:211–223.

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Onaka T, Sakurai T, Yada T (2002). Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport 13:1351–1353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Deurveilher, S., Semba, K. (2006). Mapping Sleep-Wake Control with the Transcription Factor c-Fos. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_7

Download citation

Publish with us

Policies and ethics