Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl AS (1986). The role of vibrissae in behavior: a status review. Vet Res Commun 10:245–268.

    Article  PubMed  CAS  Google Scholar 

  • Angel P, Karin M (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157.

    PubMed  CAS  Google Scholar 

  • Beckmann AM, Wilce PA (1997). Egr transcription factors in the nervous system. Neurochem Int 31:477–510; discussion 517–476.

    Article  PubMed  CAS  Google Scholar 

  • Bernardo KL, Woolsey TA (1987). Axonal trajectories between mouse somatosensory thalamus and cortex. J Comp Neurol 258:542–564.

    Article  PubMed  CAS  Google Scholar 

  • Bialy M, Beck J (1993). The influence of vibrissae removal on copulatory behaviour in male rats. Acta Neurobiol Exp (Wars) 53:415–419.

    CAS  Google Scholar 

  • Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K, Staiger JF (2002). Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23:187–198.

    Article  PubMed  CAS  Google Scholar 

  • Eferl R, Wagner EF (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868.

    Article  PubMed  CAS  Google Scholar 

  • Filipkowski RK (2000). Inducing gene expression in barrel cortex—focus on immediate early genes. Acta Neurobiol Exp (Wars) 60:411–418.

    CAS  Google Scholar 

  • Filipkowski RK, Rydz M, Kaczmarek L (2001). Expression of c-Fos, Fos B, Jun B, and Zif268 transcription factor proteins in rat barrel cortex following apomorphine-evoked whisking behavior. Neuroscience 106:679–688.

    Article  PubMed  CAS  Google Scholar 

  • Filipkowski RK, Rydz M, Berdel B, Morys J, Kaczmarek L (2000). Tactile experience induces c-fos expression in rat barrel cortex. Learn Mem 7:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Fox K (2002). Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111:799–814.

    Article  PubMed  CAS  Google Scholar 

  • Fujino T, Lee WC, Nedivi E (2003). Regulation of cpg15 by signaling pathways that mediate synaptic plasticity. Mol Cell Neurosci 24:538–554.

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Somogyi P (1986). Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Exp Brain Res 61:323–331.

    PubMed  CAS  Google Scholar 

  • Glazewski S (1998). Experience-dependent changes in vibrissae evoked responses in the rodent barrel cortex. Acta Neurobiol Exp (Wars) 58:309–320.

    CAS  Google Scholar 

  • Glazewski S, Chen CM, Silva A, Fox K (1996). Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272:421–423.

    PubMed  CAS  Google Scholar 

  • Glazewski S, McKenna M, Jacquin M, Fox K (1998). Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci 10:2107–2116.

    Article  PubMed  CAS  Google Scholar 

  • Glazewski S, Barth AL, Wallace H, McKenna M, Silva A, Fox K (1999). Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cereb Cortex 9:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Guic-Robles E, Valdivieso C, Guajardo G (1989). Rats can learn a roughness discrimination using only their vibrissal system. Behav Brain Res 31:285–289.

    Article  PubMed  CAS  Google Scholar 

  • Guic-Robles E, Jenkins WM, Bravo H (1992). Vibrissal roughness discrimination is barrelcortexdependent. Behav Brain Res 48:145–152.

    PubMed  CAS  Google Scholar 

  • Gustafson JW, Felbain-Keramidas SL (1977). Behavioral and neural approaches to the function of the mystacial vibrissae. Psychol Bull 84:477–488.

    Article  PubMed  CAS  Google Scholar 

  • Harwell C, Burbach B, Svoboda K, Nedivi E (2005). Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice. J Neurobiol 65:85–96.

    Article  PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490.

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995). Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178.

    PubMed  CAS  Google Scholar 

  • Jaworski J, Mioduszewska B, Sanchez-Capelo A, Figiel I, Habas A, Gozdz A, Proszynski T, Hetman M, Mallet J, Kaczmarek L (2003). Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 23:4519–4526.

    PubMed  CAS  Google Scholar 

  • Jensen KF, Killackey HP (1987). Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7:3529–3543.

    PubMed  CAS  Google Scholar 

  • Jones EG (1993). GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997). Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237–256.

    Article  PubMed  CAS  Google Scholar 

  • Kaminska B, Pyrzynska B, Ciechomska I, Wisniewska M (2000). Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol Exp (Wars) 60:395–402.

    CAS  Google Scholar 

  • Keller A, White EL (1987). Synaptic organization of GABAergic neurons in the mouse SmI cortex. J Comp Neurol 262:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kobierski LA, Chu HM, Tan Y, Comb MJ (1991). cAMP-dependent regulation of proenkephalin by JunD and JunB: positive and negative effects of AP-1 proteins. Proc Natl Acad Sci USA 88:10222–10226.

    Article  PubMed  CAS  Google Scholar 

  • Kossut M (1998). Experience-dependent changes in function and anatomy of adult barrel cortex. Exp Brain Res 123:110–116.

    Article  PubMed  CAS  Google Scholar 

  • Li CX, Callaway JC, Waters RS (2002). Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation. Exp Brain Res 145:411–428.

    Article  PubMed  CAS  Google Scholar 

  • Lipp HP, Van der Loos H (1991). A computer-controlled Y-maze for the analysis of vibrissotactile discrimination learning in mice. Behav Brain Res 45:135–145.

    PubMed  CAS  Google Scholar 

  • Mack KJ, Mack PA (1992). Induction of transcription factors in somatosensory cortex after tactile stimulation. Brain Res Mol Brain Res 12:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Mack KJ, Yi SD, Chang S, Millan N, Mack P (1995). NGFI-C expression is affected by physiological stimulation and seizures in the somatosensory cortex. Brain Res Mol Brain Res 29:140–146.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Tsukada T, Ohkura N, Bandoh S, Hosono T, Yamaguchi K (1998). The NGFI-B subfamily of the nuclear receptor superfamily (review). Int J Oncol 12:1237–1243.

    PubMed  CAS  Google Scholar 

  • Mello CV, Velho TA, Pinaud R (2004). Song-induced gene expression: a window on song auditory processing and perception. Ann NY Acad Sci 1016:263–281.

    Article  PubMed  CAS  Google Scholar 

  • Melzer P, Steiner H (1997). Stimulus-dependent expression of immediate-early genes in rat somatosensory cortex. J Comp Neurol 380:145–153.

    Article  PubMed  CAS  Google Scholar 

  • Micheva KD, Beaulieu C (1995). An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci USA 92:11834–11838.

    Article  PubMed  CAS  Google Scholar 

  • Mioduszewska B, Jaworski J, Kaczmarek L (2003). Inducible cAMP early repressor (ICER) in the nervous system—a transcriptional regulator of neuronal plasticity and programmed cell death. J Neurochem 87:1313–1320.

    Article  PubMed  CAS  Google Scholar 

  • Montero VM (1997). c-fos induction in sensory pathways of rats exploring a novel complex environment: shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76:1069–1081.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991). Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451.

    Article  PubMed  CAS  Google Scholar 

  • Nedivi E, Wu GY, Cline HT (1998). Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281:1863–1866.

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Parker KL, Schimmer BP (1994). The role of nuclear receptors in steroid hormone production. Semin Cancer Biol 5:317–325.

    PubMed  CAS  Google Scholar 

  • Petersohn D, Thiel G (1996). Role of zinc-finger proteins Sp1 and zif268/egr-1 in transcriptional regulation of the human synaptobrevin II gene. Eur J Biochem 239:827–834.

    Article  PubMed  CAS  Google Scholar 

  • Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995). The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270:24361–24369.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R (2004). Experience-dependent immediate early gene expression in the adult central nervous system: evidence from enriched-environment studies. Int J Neurosci 114:321–333.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R (2005). Critical calcium-regulated biochemical and gene expression programs involved in experience-dependent plasticity. In: Plasticity in the Visual System: From Genes to Circuits (Pinaud R, Tremere LA, De Weerd P, eds), pp. 153–180. New York: Springer-Verlag.

    Google Scholar 

  • Pinaud R, Velho TA, Jeong JK, Tremere LA, Leao RM, von Gersdorff H, Mello CV (2004). GABAergic neurons participate in the brain’s response to birdsong auditory stimulation. Eur J Neurosci 20:1318–1330.

    Article  PubMed  Google Scholar 

  • Pospelov VA, Pospelova TV, Julien JP (1994). AP-1 and Krox-24 transcription factors activate the neurofilament light gene promoter in P19 embryonal carcinoma cells. Cell Growth Differ 5:187–196.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (1998). Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol 30:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Schiffman HR, Lore R, Passafiume J, Neeb R (1970). Role of vibrissae for depth perception in the rat (Rattus norvegicus). Anim Behav 18:290–292.

    Article  PubMed  CAS  Google Scholar 

  • Staiger JF, Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K (2000). Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99:7–16.

    Article  PubMed  CAS  Google Scholar 

  • Staiger JF, Masanneck C, Bisler S, Schleicher A, Zuschratter W, Zilles K (2002). Excitatory and inhibitory neurons express c-Fos in barrel-related columns after exploration of a novel environment. Neuroscience 109:687–699.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1994). Tactile sensory input regulates basal and apomorphine-induced immediate-early gene expression in rat barrel cortex. J Comp Neurol 344:297–304.

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Schoch S, Petersohn D (1994). Regulation of synapsin I gene expression by the zinc finger transcription factor zif268/egr-1. J Biol Chem 269:15294–15301.

    PubMed  CAS  Google Scholar 

  • Tremere L, Hicks TP, Rasmusson DD (2001a). Expansion of receptive fields in raccoon somatosensory cortex in vivo by GABA(A) receptor antagonism: implications for cortical reorganization. Exp Brain Res 136:447–455.

    Article  PubMed  CAS  Google Scholar 

  • Tremere L, Hicks TP, Rasmusson DD (2001b). Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J Neurophysiol 86:94–103.

    PubMed  CAS  Google Scholar 

  • Tremere LA, Pinaud R (2005). Intra-cortical inhibition in the regulation of receptive field properties and neural plasticity in the primary visual cortex. In: Plasticity in the Visual System: From Genes to Circuits (Pinaud R, Tremere LA, De Weerd P, eds), pp. 229–243. New York: Spinger-Verlag.

    Google Scholar 

  • Tremere LA, Pinaud R, De Weerd P (2003). Contributions of inhibitory mechanisms to perceptual completion and cortical reorganization. In: Filling-in: From Perceptual Completion to Cortical Reorganization (Pessoa L, De Weerd P, eds), pp. 295–322. New York: Oxford University Press.

    Google Scholar 

  • Wallace H, Fox K (1999). Local cortical interactions determine the form of cortical plasticity. J Neurobiol 41:58–63.

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Soriano E, Van der Loos H (1989a). Plasticity in the barrel cortex of the adult mouse: effects of peripheral deprivation on GAD-immunoreactivity. Exp Brain Res 74:441–452.

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Soriano E, Dorfl J, Van der Loos H (1989b). Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 78:659–664.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pinaud, R., Filipkowski, R.K., Fortes, A.F., Tremere, L.A. (2006). Immediate Early Gene Expression in the Primary Somatosensory Cortex: Focus on the Barrel Cortex. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_5

Download citation

Publish with us

Policies and ethics