Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1995). Sound stimulation induces Fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J Comp Neurol 361:645–668.

    PubMed  CAS  Google Scholar 

  • Avey MT, Phillmore LS, MacDougall-Shackleton SA (2005). Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches. Behav Brain Res 165:247–253.

    PubMed  CAS  Google Scholar 

  • Bailey DJ, Wade J (2003). Differential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch. Brain Res Mol Brain Res 116:147–154.

    PubMed  CAS  Google Scholar 

  • Bailey DJ, Wade J (2005). FOS and ZENK responses in 45-day-old zebra finches vary with auditory stimulus and brain region, but not sex. Behav Brain Res 162:108–115.

    PubMed  CAS  Google Scholar 

  • Bailey DJ, Rosebush JC, Wade J (2002). The hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch. J Neurobiol 52:43–51.

    PubMed  Google Scholar 

  • Bolhuis JJ, Zijlstra GG, den Boer-Visser AM, Van Der Zee EA (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences USA 97:2282–2285.

    CAS  Google Scholar 

  • Bolhuis JJ, Hetebrij E, Den Boer-Visser AM, De Groot JH, Zijlstra GG (2001). Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. Eur J Neurosci 13:2165–2170.

    PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM, Brasher CA, Dooling RJ (1987). Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections. Brain, Behavior and Evolution 30:174–199.

    PubMed  CAS  Google Scholar 

  • Brown MC, Liu TS (1995). Fos-like immunoreactivity in central auditory neurons of the mouse. J Comp Neurol 357:85–97.

    PubMed  CAS  Google Scholar 

  • Burmeister SS, Fernald RD (2005). Evolutionary conservation of the egr-1 immediate-early gene response in a teleost. J Comp Neurol 481:220–232.

    PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (1996). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York, NY: Wiley-Liss.

    Google Scholar 

  • Cardin JA, Schmidt MF (2003). Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal. J Neurophysiol 90:2884–2899.

    PubMed  Google Scholar 

  • Cardin JA, Schmidt MF (2004). Noradrenergic inputs mediate state dependence of auditory responses in the avian song system. J Neurosci 24:7745–7753.

    PubMed  CAS  Google Scholar 

  • Carretta D, Herve-Minvielle A, Bajo VM, Villa AE, Rouiller EM (1999). c-Fos expression in the auditory pathways related to the significance of acoustic signals in rats performing a sensory-motor task. Brain Res 841:170–183.

    PubMed  CAS  Google Scholar 

  • Catchpole CK, Slater PJB (1995). Bird Song: Biological Themes and Variations. Cambridge, UK.: Cambridge University Press.

    Google Scholar 

  • Cecchi GA, Ribeiro S, Mello CV, Magnasco MO (1999). An automated system for the mapping and quantitative analysis of immunocytochemistry of an inducible nuclear protein. Journal of Neuroscience Methods 87:147–158.

    PubMed  CAS  Google Scholar 

  • Chaudhuri A (1997). Neural activity mapping with inducible transcription factors. Neuroreport 8:iii–vii.

    PubMed  CAS  Google Scholar 

  • Chaudhuri A, Zangenehpour S (2002). Molecular activity maps of sensory function. In: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction (Kaczmarek L, Robertson HA, eds). Amsterdam: Elsevier.

    Google Scholar 

  • Cheng MF, Zuo M (1994). Proposed pathways for vocal self-stimulation: met-enkephalinergic projections linking the midbrain vocal nucleus, auditory-responsive thalamic regions and neurosecretory hypothalamus. Journal of Neurobiology 25:361–379.

    PubMed  CAS  Google Scholar 

  • Chew SJ, Vicario DS, Nottebohm F (1996). A large-capacity memory system that recognizes the calls and songs of individual birds. Proceedings of the National Academy of Sciences USA 93:1950–1955.

    CAS  Google Scholar 

  • Chew SJ, Mello C, Nottebohm F, Jarvis E, Vicario DS (1995). Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proceedings of the National Academy of Sciences USA 92:3406–3410.

    CAS  Google Scholar 

  • Christy B, Nathans D (1989). DNA binding site of the growth factor-inducible protein Zif268. Proceedings of the National Academy of Sciences USA 86:8737–8741.

    CAS  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1996). Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 274:1211–1215.

    PubMed  CAS  Google Scholar 

  • Clayton DF (2000). The genomic action potential. Neurobiol Learn Mem 74:185–216.

    PubMed  CAS  Google Scholar 

  • Cody AR, Wilson W, Leah J (1996). Acoustically activated c-fos expression in auditory nuclei of the anaesthetised guinea pig. Brain Res 728:72–78.

    PubMed  CAS  Google Scholar 

  • Dave AS, Yu AC, Margoliash D (1998). Behavioral state modulation of auditory activity in a vocal motor system. Science 282:2250–2254.

    PubMed  CAS  Google Scholar 

  • Doupe AJ, Konishi M (1991). Song-selective auditory circuits in the vocal control system of the zebra finch. Proceedings of the National Academy of Sciences USA 88:11339–11343.

    CAS  Google Scholar 

  • Durand SE, Tepper JM, Cheng MF (1992). The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. Journal of Comparative Neurology 323:495–518.

    PubMed  CAS  Google Scholar 

  • Eda-Fujiwara H, Satoh R, Bolhuis JJ, Kimura T (2003). Neuronal activation in female budgerigars is localized and related to male song complexity. Eur J Neurosci 17:149–154.

    PubMed  Google Scholar 

  • Ehret G, Fischer R (1991). Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res 567:350–354.

    PubMed  CAS  Google Scholar 

  • Fichtel I, Ehret G (1999). Perception and recognition discriminated in the mouse auditory cortex by c-Fos labeling. Neuroreport 10:2341–2345.

    PubMed  CAS  Google Scholar 

  • Friauf E (1992). Tonotopic Order in the Adult and Developing Auditory System of the Rat as Shown by c-fos Immunocytochemistry. Eur J Neurosci 4:798–812.

    PubMed  Google Scholar 

  • Friauf E (1995). C-fos immunocytochemical evidence for acoustic pathway mapping in rats. Behav Brain Res 66:217–224.

    PubMed  CAS  Google Scholar 

  • Gehr DD, Hofer SB, Marquardt D, Leppelsack H (2000). Functional changes in field L complex during song development of juvenile male zebra finches(1). Developmental Brain Research 125:153–165.

    PubMed  CAS  Google Scholar 

  • Gehr DD, Capsius B, Grabner P, Gahr M, Leppelsack HJ (1999). Functional organisation of the field-L-complex of adult male zebra finches. Neuroreport 10:375–380.

    PubMed  CAS  Google Scholar 

  • Geissler DB, Ehret G (2004). Auditory perception vs. recognition: representation of complex communication sounds in the mouse auditory cortical fields. Eur J Neurosci 19:1027–1040.

    PubMed  Google Scholar 

  • Gentner TQ, Margoliash D (2003). Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674.

    PubMed  CAS  Google Scholar 

  • Gentner TQ, Hulse SH, Duffy D, Ball GF (2001). Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. Journal of Neurobiology 46:48–58.

    PubMed  CAS  Google Scholar 

  • Grace JA, Amin N, Singh NC, Theunissen FE (2003). Selectivity for conspecific song in the zebra finch auditory forebrain. J Neurophysiol 89:472–487.

    PubMed  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neuroscience 2:1120–1124.

    PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. Journal of Neuroscience 20:3993–4001.

    PubMed  CAS  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985). Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol 53:89–109.

    PubMed  CAS  Google Scholar 

  • Hernandez AM, MacDougall-Shackleton SA (2004). Effects of early song experience on song preferences and song control and auditory brain regions in female house finches (Carpodacus mexicanus). J Neurobiol 59:247–258.

    PubMed  Google Scholar 

  • Hillman DE, Gordon CE, Troublefield Y, Stone E, Giacchi RJ, Chen S (1997). Effect of unilateral tympanotomy on auditory induced c-fos expression in cochlear nuclei. Brain Res 748:77–84.

    PubMed  CAS  Google Scholar 

  • Hoke KL, Ryan MJ, Wilczynski W (2005). Social cues shift functional connectivity in the hypothalamus. Proc Natl Acad Sci USA 102:10712–10717.

    PubMed  CAS  Google Scholar 

  • Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004). Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24:11264–11272.

    PubMed  CAS  Google Scholar 

  • Hsu A, Woolley SM, Fremouw TE, Theunissen FE (2004). Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. J Neurosci 24:9201–9211.

    PubMed  CAS  Google Scholar 

  • Illing RB, Michler SA (2001). Modulation of P-CREB and expression of c-fos in cochlear nucleus and superior olive following electrical intracochlear stimulation. Neuroreport 12:875–878.

    PubMed  CAS  Google Scholar 

  • Illing RB, Michler SA, Kraus KS, Laszig R (2002). Transcription factor modulation and expression in the rat auditory brainstem following electrical intracochlear stimulation. Exp Neurol 175:226–244.

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Nottebohm F (1997). Motor-driven gene expression. Proc Natl Acad Sci USA 94:4097–4102.

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Mello CV (2000). Molecular mapping of brain areas involved in parrot vocal communication. Journal of Comparative Neurology 419:1–31.

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Mello CV, Nottebohm F (1995). Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learn Mem 2:62–80.

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Ribeiro S, da Silva ML, Ventura D, Vielliard J, Mello CV (2000). Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–632.

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005). Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159.

    PubMed  CAS  Google Scholar 

  • Jen PH, Sun X, Shen JX, Chen QC, Qian Y (1997). Cytoarchitecture and sound activated responses in the auditory cortex of the big brown bat, Eptesicus fuscus. Acta Otolaryngol Suppl 532:61–67.

    CAS  Google Scholar 

  • Jin H, Clayton DF (1997). Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron 19:1049–1059.

    PubMed  CAS  Google Scholar 

  • Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis S (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neuroscience 4:289–296.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L, Robertson HA (2002). Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction. Amsterdam: Elsevier.

    Google Scholar 

  • Kai N, Niki H (2002). Altered tone-induced Fos expression in the mouse inferior colliculus after early exposure to intense noise. Neurosci Res 44:305–313.

    PubMed  CAS  Google Scholar 

  • Kandiel A, Chen S, Hillman DE (1999). c-fos gene expression parallels auditory adaptation in the adult rat. Brain Res 839:292–297.

    PubMed  CAS  Google Scholar 

  • Karten HJ (1967). The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Research 6:409–427.

    PubMed  CAS  Google Scholar 

  • Karten HJ (1968). The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research 11:134–153.

    PubMed  CAS  Google Scholar 

  • Keilmann A, Herdegen T (1996). Decreased expression of the c-Fos, but not Jun B, transcription factor in the auditory pathway of the rat after repetitive acoustic stimulation. ORL J Otorhinolaryngol Relat Spec 58:262–265.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1999). Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl. J Comp Physiol [A] 185:305–321.

    CAS  Google Scholar 

  • Knudsen EI (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Zheng W, DeBello WM (2000). Traces of learning in the auditory localization pathway. Proc Natl Acad Sci USA 97:11815–11820.

    PubMed  CAS  Google Scholar 

  • Kroodsma DE, Miller EH (1996). Ecology and Evolution of Acoustic Communication in Birds. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Kruse AA, Stripling R, Clayton DF (2004). Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiol Learn Mem 82:99–108.

    PubMed  CAS  Google Scholar 

  • Lemaire P, Revelant O, Bravo R, Charnay P (1988). Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proceedings of the National Academy of Sciences USA 85:4691–4695.

    CAS  Google Scholar 

  • Luo L, Ryan AF, Saint Marie RL (1999). Cochlear ablation alters acoustically induced c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404:271–283.

    PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445.

    PubMed  CAS  Google Scholar 

  • Maney DL, MacDougall-Shackleton EA, MacDougall-Shackleton SA, Ball GF, Hahn TP (2003). Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in a female songbird. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:667–674.

    PubMed  CAS  Google Scholar 

  • Margoliash D (1986). Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. Journal of Neuroscience 6:1643–1661.

    PubMed  CAS  Google Scholar 

  • Mello C, Nottebohm F, Clayton D (1995). Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene’s response to that song in zebra finch telencephalon. Journal of Neuroscience 15:6919–6925.

    PubMed  CAS  Google Scholar 

  • Mello CV (2002a). Mapping vocal communication pathways in birds with inducible gene expression. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:943–959.

    PubMed  CAS  Google Scholar 

  • Mello CV (2002b). Immediate-early gene (IEG) expression mapping of vocal communication areas in the avian brain. In: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction (Kaczmarek L, Robertson HA, eds). Amsterdam: Elsevier.

    Google Scholar 

  • Mello CV (2004). Gene regulation by song in the auditory telencephalon of songbirds. Front Biosci 9:63–73.

    PubMed  CAS  Google Scholar 

  • Mello CV, Clayton DF (1994). Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J Neurosci 14:6652–6666.

    PubMed  CAS  Google Scholar 

  • Mello CV, Clayton DF (1995). Differential induction of the ZENK gene in the avian forebrain and song control circuit after metrazole-induced depolarization. J Neurobiol 26:145–161.

    PubMed  CAS  Google Scholar 

  • Mello CV, Ribeiro S (1998). ZENK protein regulation by song in the brain of songbirds. Journal of Comparative Neurology 393: 426–438.

    PubMed  CAS  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF (1992). Song presentation induces gene expression in the songbird forebrain. Proceedings of the National Academy of Sciences USA 89: 6818–6822.

    CAS  Google Scholar 

  • Mello CV, Velho TA, Pinaud R (2004). Song-induced gene expression: a window on song auditory processing and perception. Ann N Y Acad Sci 1016: 263–281.

    PubMed  CAS  Google Scholar 

  • Mello CV, Vates GE, Okuhata S, Nottebohm F (1998). Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). Journal of Comparative Neurology 395: 137–160.

    PubMed  CAS  Google Scholar 

  • Metzger M, Jiang S, Braun K (1998). Organization of the dorsocaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. Journal of Comparative Neurology 395: 380–404.

    PubMed  CAS  Google Scholar 

  • Milbrandt J (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238: 797–799.

    PubMed  CAS  Google Scholar 

  • Muller CM, Leppelsack HJ (1985). Feature extraction and tonotopic organization in the avian auditory forebrain. Exp Brain Res 59: 587–599.

    PubMed  CAS  Google Scholar 

  • Nastiuk KL, Mello CV, George JM, Clayton DF (1994). Immediate-early gene responses in the avian song control system: cloning and expression analysis of the canary c-jun cDNA. Molecular Brain Research 27: 299–309.

    PubMed  CAS  Google Scholar 

  • Nick TA, Konishi M (2001). Dynamic control of auditory activity during sleep: correlation between song response and EEG. Proc Natl Acad Sci USA 98: 14012–14016.

    PubMed  CAS  Google Scholar 

  • Nick TA, Konishi M (2005a). Neural auditory selectivity develops in parallel with song. J Neurobiol 62: 469–481.

    PubMed  Google Scholar 

  • Nick TA, Konishi M (2005b). Neural song preference during vocal learning in the zebra finch depends on age and state. J Neurobiol 62: 231–242.

    PubMed  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976). Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology 165: 457–486.

    PubMed  CAS  Google Scholar 

  • Nottebohm F, Kelley DB, Paton JA (1982). Connections of vocal control nuclei in the canary telencephalon. Journal of Comparative Neurology 207: 344–357.

    PubMed  CAS  Google Scholar 

  • Park KH, Clayton DF (2002). Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. Behav Brain Res 136: 185–191.

    PubMed  Google Scholar 

  • Phillmore LS, Bloomfield LL, Weisman RG (2003). Effects of songs and calls on ZENK expression in the auditory telencephalon of field-and isolate-reared black capped chickadees. Behav Brain Res 147: 125–134.

    PubMed  CAS  Google Scholar 

  • Pinaud R, Tremere LA, Penner MR (2000). Light-induced zif268 expression is dependent on noradrenergic input in rat visual cortex. Brain Res 882: 251–255.

    PubMed  CAS  Google Scholar 

  • Pinaud R, Velho TA, Jeong JK, Tremere LA, Leao RM, von Gersdorff H, Mello CV (2004). GABAergic neurons participate in the brain’s response to birdsong auditory stimulation. Eur J Neurosci 20: 1318–1330.

    PubMed  Google Scholar 

  • Qian Y, Jen PH (1994). Fos-like immunoreactivity elicited by sound stimulation in the auditory neurons of the big brown bat Eptesicus fuscus. Brain Res 664: 241–246.

    PubMed  CAS  Google Scholar 

  • Qian Y, Wu M, Jen PH (1996). Tracing the auditory pathways to electrophysiologically characterized neurons with HRP and Fos double-labeling technique. Brain Res 731: 241–245.

    PubMed  CAS  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Guturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473: 377–414.

    PubMed  Google Scholar 

  • Ribeiro S, Mello CV (2000). Gene expression and synaptic plasticity in the auditory forebrain of songbirds. Learning and Memory 7: 235–243.

    PubMed  CAS  Google Scholar 

  • Ribeiro S, Cecchi GA, Magnasco MO, Mello CV (1998). Toward a song code: evidence for a syllabic representation in the canary brain. Neuron 21: 359–371.

    PubMed  CAS  Google Scholar 

  • Ribeiro SP, R.; Mello, C. (1999). Noradrenergic modulation of song-induced ZENK expression in the zebra finch brain. In: 29th Annual Meeting of the Society for Neuroscience, p. 348–344.

    Google Scholar 

  • Riera-Sala C, Molina-Mira A, Marco-Algarra J, Martinez-Soriano F, Olucha FE (2001). Inner ear lesion alters acoustically induced c-Fos expression in the rat auditory rhomboencephalic brainstem. Hear Res 162: 53–66.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Wan XS, Moret V, Liang F (1992). Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci Lett 144: 19–24.

    PubMed  CAS  Google Scholar 

  • Saint Marie RL, Luo L, Ryan AF (1999). Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404: 258–270.

    PubMed  CAS  Google Scholar 

  • Saito H, Miller JM, Altschuler RA (2000). Cochleotopic fos immunoreactivity in cochlea and cochlear nuclei evoked by bipolar cochlear electrical stimulation. Hear Res 145: 37–51.

    PubMed  CAS  Google Scholar 

  • Saito H, Miller JM, Pfingst BE, Altschuler RA (1999). Fos-like immunoreactivity in the auditory brainstem evoked by bipolar intracochlear electrical stimulation: effects of current level and pulse duration. Neuroscience 91: 139–161.

    PubMed  CAS  Google Scholar 

  • Sakata S, Kitsukawa T, Kaneko T, Yamamori T, Sakurai Y (2002). Task-dependent and cell-typespecific Fos enhancement in rat sensory cortices during audio-visual discrimination. Eur J Neurosci 15: 735–743.

    PubMed  Google Scholar 

  • Scheich H, Zuschratter W (1995). Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies. Behav Brain Res 66: 195–205.

    PubMed  CAS  Google Scholar 

  • Scheich H, Stark H, Zuschratter W, Ohl FW, Simonis CE (1997). Some functions of primary auditory cortex in learning and memory formation. Adv Neurol 73: 179–193.

    PubMed  CAS  Google Scholar 

  • Schmidt MF, Konishi M (1998). Gating of auditory responses in the vocal control system of awake songbirds. Nature Neuroscience 1: 513–518.

    PubMed  CAS  Google Scholar 

  • Sen K, Theunissen FE, Doupe AJ (2001). Feature analysis of natural sounds in the songbird auditory forebrain. J Neurophysiol 86: 1445–1458.

    PubMed  CAS  Google Scholar 

  • Shea SD, Margoliash D (2003). Basal forebrain cholinergic modulation of auditory activity in the zebra finch song system. Neuron 40: 1213–1226.

    PubMed  CAS  Google Scholar 

  • Sockman KW, Gentner TQ, Ball GF (2002). Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings. Proc R Soc Lond B Biol Sci 269: 2479–2485.

    Google Scholar 

  • Sockman KW, Gentner TQ, Ball GF (2005). Complementary neural systems for the experience-dependent integration of mate-choice cues in European starlings. J Neurobiol 62: 72–81.

    PubMed  Google Scholar 

  • Sonnenberg JL, Rauscher FJ, Morgan JI, Curran T (1989). Regulation of proenkephalin by Fos and Jun. Science 246: 1622–1625.

    PubMed  CAS  Google Scholar 

  • Steward O, Worley P (2002). Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol Learn Mem 78: 508–527.

    PubMed  CAS  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21: 741–751.

    PubMed  CAS  Google Scholar 

  • Stripling R, Volman SF, Clayton DF (1997). Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. Journal of Neuroscience 17: 3883–3893.

    PubMed  CAS  Google Scholar 

  • Stripling R, Kruse AA, Clayton DF (2001). Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. J Neurobiol 48: 163–180.

    PubMed  CAS  Google Scholar 

  • Suga N (1989). Principles of auditory information-processing derived from neuroethology. J Exp Biol 146: 277–286.

    PubMed  CAS  Google Scholar 

  • Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T, et al. (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43.

    PubMed  CAS  Google Scholar 

  • Terleph TA, Mello CV, Vicario DS (2006). Auditory topography and temporal response dynamics of canary caudal telencephalon. J Neurobiol. 66: 281–292.

    PubMed  Google Scholar 

  • Terpstra NJ, Bolhuis JJ, den Boer-Visser AM (2004). An analysis of the neural representation of birdsong memory. J Neurosci 24: 4971–4977.

    PubMed  CAS  Google Scholar 

  • Terpstra NJ, Bolhuis JJ, Den Boer-Visser AM, Ten Cate C (2005). Neuronal activation related to auditory perception in the brain of a non-songbird, the ring dove. J Comp Neurol 488: 342–351.

    PubMed  Google Scholar 

  • Vates GE, Broome BM, Mello CV, Nottebohm F (1996). Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366: 613–642.

    PubMed  CAS  Google Scholar 

  • Velho TA, Pinaud R, Rodrigues PV, Mello CV (2005). Co-induction of activity-dependent genes in songbirds. Eur J Neurosci 22: 1667–1678.

    PubMed  Google Scholar 

  • Vignal C, Andru J, Mathevon N (2005). Social context modulates behavioural and brain immediate early gene responses to sound in male songbird. Eur J Neurosci 22: 949–955.

    PubMed  Google Scholar 

  • Vignal C, Attia J, Mathevon N, Beauchaud M (2004). Background noise does not modify song-induced genic activation in the bird brain. Behav Brain Res 153: 241–248.

    PubMed  Google Scholar 

  • Vischer MW, Hausler R, Rouiller EM (1994). Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci Res 19: 175–185.

    PubMed  CAS  Google Scholar 

  • Vischer MW, Bajo-Lorenzana V, Zhang J, Hausler R, Rouiller EM (1995). Activity elicited in the auditory pathway of the rat by electrical stimulation of the cochlea. ORL J Otorhinolaryngol Relat Spec 57: 305–309.

    PubMed  CAS  Google Scholar 

  • Wallhausser-Franke E, Mahlke C, Oliva R, Braun S, Wenz G, Langner G (2003). Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res 153: 649–654.

    PubMed  CAS  Google Scholar 

  • Wan H, Warburton EC, Kusmierek P, Aggleton JP, Kowalska DM, Brown MW (2001). Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds. Eur J Neurosci 14: 118–124.

    PubMed  CAS  Google Scholar 

  • Wild JM, Karten HJ, Frost BJ (1993). Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337: 32–62.

    PubMed  CAS  Google Scholar 

  • Zhang JS, Haenggeli CA, Tempini A, Vischer MW, Moret V, Rouiller EM (1996). Electrically induced fos-like immunoreactivity in the auditory pathway of the rat: effects of survival time, duration, and intensity of stimulation. Brain Res Bull 39: 75–82.

    PubMed  CAS  Google Scholar 

  • Zuschratter W, Gass P, Herdegen T, Scheich H (1995). Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus). Eur Journal of Neuroscience 7: 1614–1626.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Mello, C.V., Pinaud, R. (2006). Immediate Early Gene Regulation in the Auditory System. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_3

Download citation

Publish with us

Policies and ethics