Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383.

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Cummings BJ, Cotman CW (1994). Increased immunoreactivity for Jun-and Fos-related proteins in Alzheimer’s disease: association with pathology. Exp Neurol 125:286–295.

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Su JH, Cotman CW (1996). DNA damage and apoptosis in Alzheimer’s disease: co-localization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16:1710–1719.

    PubMed  CAS  Google Scholar 

  • Anderton BH, Betts J, Blackstock WP, Brion JP, Chapman S, Connell J, Dayanandan R, Gallo JM, Gibb G, Hanger DP, Hutton M, Kardalinou E, Leroy K, Lovestone S, Mack T, Reynolds CH, van Slegtenhorst M (2001). Sites of phosphorylation in tau and factors affecting their regulation. Biochem Soc Symp 67:73–80.

    PubMed  CAS  Google Scholar 

  • Atzori C, Ghetti B, Piva R, Srinivasan AN, Zolo P, Delisle MB, Mirra SS, Migheli A (2001). Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J Neuropathol Exp Neurol 60:1190–1197.

    PubMed  CAS  Google Scholar 

  • Bales KR, Du Y, Holtzman D, Cordell B, Paul SM (2000). Neuroinflammation and Alzheimer’s disease: critical role for cytokine/Aβ induced glial activation, NFκB, and apolipoprotein E. Neurobiol Aging 21:427–432.

    PubMed  CAS  Google Scholar 

  • Bertram L, Tanzi R (2003). Genetics of Alzheimer’s disease. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson D, ed.), pp. 40–46. Basel: ISN Neuropath Press.

    Google Scholar 

  • Boissiere F, Hunnot S, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC (1997). Nuclear translocation of NFκB in cholinergic neurons of patients with Alzheimer’s disease. NeuroReport 8:2849–2852.

    PubMed  CAS  Google Scholar 

  • Bonnycastle LL, Yu CE, Wijsman EM, Orr HT, Patterson D, Clancy KP, Goddard KA, Alonso ME, Nemens E, White JA (1993). The c-fos gene and early-onset familial Alzheimer’s disease. Neurosci Lett 160:33–36.

    PubMed  CAS  Google Scholar 

  • Bozyczko-Coyne D, O’Kane TM, Wu ZL, Dobrzanski P, Murphy S, Vaught JL, Scott RW (2001). CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activity, promotes survival and blocks multiple events associated with Aβ-induced cortical neuron apoptosis. J Neurochem 77:849–863.

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1999). Temporal sequence of Alzheimer’s disease-related pathology. In: Cerebral Cortex, vol. 14: Neurodegenerative and Age-Related Changes in Structure and Function of Cerebral Cortex (Peters A, Morrison JH, eds.), pp. 475–512. New York, Boston, Dordrecht, London, Moscow: Kluver Academic Press.

    Google Scholar 

  • Cavigelli M, Dolfi F, Claret FX, Karin M (1995). Induction of cFos expression through JNK-mediated TCF-ELK-1 phosphorylation. EMBO J 14:5957–5964.

    PubMed  CAS  Google Scholar 

  • Cobb MH, Goldsmith EJ (1995). How MAP kinases are regulated. J Biol Chem 270:14843–14846.

    PubMed  CAS  Google Scholar 

  • Cruts M, Backhovens H, Martin JJ, van Broeckhoven C (1994). Genetic analysis of the cellular oncogene fos in patients with chromosome 14 encoded Alzheimer’s disease. Neurosci Lett 174:97–100.

    PubMed  CAS  Google Scholar 

  • Curran T, Franza BR (1989). Fos and Jun: the AP-1 connection. Cell 55:395–397.

    Google Scholar 

  • Dalrimple SA (2002). p38 mitogen activated protein kinase as a therapeutic target for Alzheimer’s disease. J Mol Neurosci 19:295–299.

    Google Scholar 

  • Daniels WM, Hendricks J, Salie R, Taljaard JJ (2001). The role of MAP-kinase superfamily in β-amyloid toxicity. Metab Brain Dis 16:175–185.

    PubMed  CAS  Google Scholar 

  • Dérijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ (1995). independent human MAP kinase signal-transduction pathways defined by MEK and MKK isoforms. Science 267:682–685.

    PubMed  Google Scholar 

  • Duyckaerts C, Dickson DW (2003). Neuropathology of Alzheimer’s disease. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson D, ed.), pp. 47–68. Basel: ISN Neuropath Press.

    Google Scholar 

  • Enslen H, Raingeaud J, Davis RJ (1998). Selective activation pf p38 mitogen-activated protein MAP kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273:1741–1748.

    PubMed  CAS  Google Scholar 

  • Ferrer I (2004). Stress kinases involved in tau phosphorylation in Alzheimer’s disease, tauopathies and APP transgenic mice. Neurotox Res 6:469–475.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Ballabriga J, Pozas E (1997a). Transient forebrain ischemia in the adult gerbil is associated with a complex c-Jun response. Neuroreport 8:2483–2487.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Barrachina M, Tolnay M, Rey MJ, Vidal N, Carmona M, Blanco R, Puig B (2003a). Phosphorylated protein kinases associated with neuronal and glial tau deposits in argyrophilic grain disease. Brain Pathol 13:62–78.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B (2001). Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 108:1397–1415.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Boada-Rovira M, Sanchez-Guerra ML, Rey MJ, Costa-Jussa F (2004). Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol 14:11–20.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Gómez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E, Avila J (2005). Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2:3–18.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Hernandez I, Puig B, Rey MJ, Ezquerra M, Tolosa E, Boada M (2003b). Ubiquitin-negative mini-Pick-like bodies in the dentate gyrus in P301L tauopathy. J Alzheimer’s Dis 5:445–454.

    CAS  Google Scholar 

  • Ferrer I, Lopez E, Blanco R, Rivera R, Krupinski J, Marti E (2000a). Differential c-Fos and caspase expression following kainic acid excitotoxicity. Acta Neuropathol 99:245–256.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Martí E, López E, Tortosa A (1998). NFκB immunoreactivity is observed in association with βA4 diffuse plaques in patients with Alzheimer’s disease. Neuropathol Appl Neurobiol 24:271–277.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Olive M, Ribera J, Planas AM (1996a). Naturally-occurring (programmed) and radiation-induced apoptosis are associated with selective c-Jun expression in the developing brain. Eur J Neurosci 8:1286–1298.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Pastor P, Rey MJ, Muñoz E, Puig B, Pastor E, Oliva R, Tolosa E (2003c). Tau phosphorylation and kinase activation in familial tauopathy linked to delN296 mutation. Neuropathol Appl Neurobiol 29:23–34.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Planas AM, Pozas E (1997b). Rdaiation-induced apoptosis in developing rats and kainic acidinduced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression. Neuroscience 80:449–458.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Pozas E, Planas AM (2000b). c-Jun/AP-1 (N) expression and apoptosis. Neuroscience 96:447–448.

    PubMed  CAS  Google Scholar 

  • Ferrer I, Seguí J, Planas AM (1996b). Amyloid deposition is associated with c-Jun expression in Alzheimer’s disease and amyloid angiopathy. Neuropathol Appl Neurobiol 22:521–526.

    PubMed  CAS  Google Scholar 

  • Fogarty MP, Downer EJ, Campbell V (2003). A role for c-Jun N-terminal kinase 1 (JNK-1), but not JNK2, in the β-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons. Biochem J 371:789–798.

    PubMed  CAS  Google Scholar 

  • Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997). Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62.

    PubMed  CAS  Google Scholar 

  • Götz J (2001). Tau and transgenic animal models. Brain Res Rev 35:266–286.

    PubMed  Google Scholar 

  • Guillardon F, Skutella T, Uhlmann E, Holsboer F, Zimmermann M, Behl C (1996). Activation of c-Fos contributes to β-amyloid peptide-induced neurotoxicity. Brain Res 706:169–172.

    Google Scholar 

  • Gupta S, Barrett, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770.

    PubMed  CAS  Google Scholar 

  • Gupta S, Campbell D, Dérijard B, Davis RJ (1995). Transcription factor ATF-2 regulation by JNK signal transduction pathway. Science 267:389–393.

    PubMed  CAS  Google Scholar 

  • Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P (1988). c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55:917–924.

    PubMed  CAS  Google Scholar 

  • Hammond ES, Brunet CL, Johnson GD, Parkhill J, Miller AE, Brady G, Gregory CD, Grand RJA (1998). Homology between a human apoptosis specific protein and the product of APG5, a gene involved in autophagy. FEBS Lett 425:391–395.

    PubMed  CAS  Google Scholar 

  • Hartzler AW, Zhu X, Siedlak SL, Castellani RJ, Avila J, Perry G, Smith MA (2002). The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress and tau. Neurobiol Aging 23:855–859.

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Niikura T, Chiba T, Tsukamoto E, Kadowaki H, Nishitoh H, Yamagishi Y, Ishizaka M, Yamada M, Nawa M, Terashita K, Aiso S, Ichijo H, Nishimoto I (2003). The cytoplasmic domain of Alzheimerrss amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase-mediated neurotoxic signal via dimerization. J Pharmacol Exp Ther 306:889–902.

    PubMed  CAS  Google Scholar 

  • Hazzalin CA, Cano E, Cuenda A, Barrattt MJ, Cohen P, Mahadevan LC (1996). p38/ERK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol 6:1028–1031.

    PubMed  CAS  Google Scholar 

  • Helbecque N, Abderrahamani A, Meylan L, Riederer B, Mooser V, Miklossy J, Delplanque J, Boutin P, Nicod P, Haefliger JA, Cottel D, Amouyel P, Froguel P, Waeberg G (2003). Islet-brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer’s disease. Mol Psychiatr 8:413–422.

    CAS  Google Scholar 

  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000). Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2:461–462.

    PubMed  CAS  Google Scholar 

  • Hoozemans JJ, Veerhuis R, Rozemuller AJ, Arendt T, Eikelenboom P (2004). Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis 15:492–499.

    PubMed  CAS  Google Scholar 

  • Huang Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005). NF precursor, p105, and NFκB inhibitor, IκBγ, are both elevated in Alzheimer disease brain. Neurosci Lett 373:115–118.

    PubMed  CAS  Google Scholar 

  • Hunter T, Karin M (1992). The regulation of transcription by phosphorylation. Cell 70:375–387.

    PubMed  CAS  Google Scholar 

  • Hutton M, Lewis J, Dickson D, Yen SH, McGowan E (2001). Analysis of tauopathies with transgenic mice. Trends Mol Med 7:467–470.

    PubMed  CAS  Google Scholar 

  • Hwang DY, Cho JS, Lee SH, Chae KR, Lim HJ, Min SH, Seo SJ, Song YS, Song CW, Paik SG, Sheen YY, Kim YK (2004). Aberrant expression of pathogenic phenotype in Alzheimer’s diseased transgenic mice carrying NSE-controlled APPsw. Exp Neurol 186:20–32.

    PubMed  CAS  Google Scholar 

  • Ip YT, Davis RJ (1998). Signal transduction by the c-Jun-N-terminal kinase (JNK): from inflammation to development. Curr Opin Cell Biol 10:205–219.

    PubMed  CAS  Google Scholar 

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997a). APPSw transgenic mice develop age-related Aβ deposits and neuropil abnormalities, but not [?] neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973.

    PubMed  CAS  Google Scholar 

  • Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT (1997b). Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17:7053–7059.

    PubMed  CAS  Google Scholar 

  • Jang JH, Surth YJ (2002). β-amyloid induces oxidative DNA damage and cell death through activation of c-Jun N terminal kinase. Ann NY Acad Sci 973:228–236.

    PubMed  CAS  Google Scholar 

  • Jenkins SM, Zinnerman M, Garner C, Johnson GV (2000). Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochem J 345 part 2: 263–270.

    PubMed  CAS  Google Scholar 

  • Johnson GV, Bailey CD (2003). The p38 MAP kinase signaling pathway in Alzheimer’s disease. Exp Neurol 183:263–268.

    PubMed  CAS  Google Scholar 

  • Kallunki T, Deng T, Hibi M, Karin M (1996). c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87:1–20.

    Google Scholar 

  • Kallunki T, Su B, Tsigelny Isluss HK, Dérijard B, Moore G, Davis R, Karin M (1994). JNK2 contains a specific-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 8:2996–3007.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt B, Uherek, Volk B, Baeuerle PA, Kaltschmidt C (1997). Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94:2642–2647.

    PubMed  CAS  Google Scholar 

  • Karin M (1994). Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 6:415–424.

    PubMed  CAS  Google Scholar 

  • Karin M (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486.

    PubMed  CAS  Google Scholar 

  • Kassed CA, Butler TL, Navidomskis MT, Gordon MN, Morgan D, Pennypacker KR (2003). Mice expressing human mutant presenilin-1 exhibit decreased activation of NFκB p50 in hippocampal neurons after injury. Brain Res Mol Brain Res 110:152–157.

    PubMed  CAS  Google Scholar 

  • Kihiko ME, Tucker HM, Rydel RE, Estus S (1999). c-Jun contributes to β-induced neuronal apoptosis but is not necessary for β-amyloid induced c-jun induction. J Neurochem 73:2609–2612.

    PubMed  CAS  Google Scholar 

  • King GD, Scott Turner R (2004). Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer’s disease risk? Exp Neurol 185:208–219.

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y, Taniguchi T (1997). Alteration of transcription factor NFκB and STAT1 in Alzheimer’s disease brains. Neurosci Lett 237:17–20.

    PubMed  CAS  Google Scholar 

  • Lahiri DK (2004). Apolipoprotein E as a target for developing new therapeutics for Alzheimer’s disease based on studies from protein, RNA, and regulatory region of the gene. J Mol Neurosci 23:225–233.

    PubMed  CAS  Google Scholar 

  • Lee KW, Lee SH, Kim H, Song JS, Yang SD, Paik SG, Han PL (2004). Progressive cognitive impairment and anxiety induction in the absence of plaque deposition in C57BL/6 inbred mice expressing transgenic amyloid precursor protein. J Neurosci Res 76:572–580.

    PubMed  CAS  Google Scholar 

  • Lewis J, Dickson DV (2003). Transgenic animal models of tauopathies. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson D, ed.), pp. 150–154. Basel: ISN Neuropath Press.

    Google Scholar 

  • Lim F, Hernandez F, Lucas JJ, Gómez-Ramos P, Morán MA, Avila J (2001). FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and tau filaments in the forebrain. Mol Cell Neurosci 18:702–714.

    PubMed  CAS  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL, Karin M (1995). Identification of a dual specificity kinase that activates the Jun kinase and p38-Mpk2. Science 268:289–290.

    Google Scholar 

  • MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M (1997). Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147:316–332.

    PubMed  CAS  Google Scholar 

  • Marcus DL, Strafaci JA, Miller DC, Masia S, Thomas CG, Rosman J, Hussain S, Freedman ML (1998). Quantitative neuronal c-fos and c-jun expression in Alzheimer’s disease. Neurobiol Aging 19:393–400.

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Carney JM (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146.

    PubMed  CAS  Google Scholar 

  • Marques CA, Keil U, Bonert A, Steiner B, Haass C, Muller WE, Eckert A (2003). Neurotoxic mechanisms caused by Alzheimer’s disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 278:28294–28302.

    PubMed  CAS  Google Scholar 

  • Matsuda S, Yasukawa T, Homma Y, Ito Y, Niikura T, Hiraki T, Hirai S, Ohno S, Kita Y, Kawasumi M, Kouyama K, Yamamoto T, Kyriakis JM, Nishimoto I (2001). c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer’s amyloid precursor protein with JNK. J Neurosci 21:6597–6607.

    PubMed  CAS  Google Scholar 

  • McGowan E, Pickord F, Dickson DW (2003). Alzheimer animal models: models of Aβ deposition in transgenic mice. In: Neurogeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson D, ed.), pp. 74–79. Basel: ISN Neuropath Press.

    Google Scholar 

  • Mielke K, Herdegen T (2000). JNK and p38 stress kinases. Degenerative effectors of signaltransduction cascades in the nervous system. Progr Neurobiol 61:45–60.

    PubMed  CAS  Google Scholar 

  • Minden A, Karin M (1997). Regulation and function of the JNK subgroup of MAP kinases. Biochem Biophys Acta 1333:F85–F104.

    PubMed  CAS  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001). β-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560.

    PubMed  CAS  Google Scholar 

  • Morris SW, St Clair DM (1994). Eliminating c-fos as a candidate gene for early-onset familial Alzheimer’s disease. Neurology 44:1762–1764.

    PubMed  CAS  Google Scholar 

  • Munujos P, Vendrell M, Ferrer I (1993). Proto-oncogene c-fos induction in thiamine-deficient encephalopathy. Protective effects of nicardipine on pyrithiamine-induced lesions. J Neurol Sci 118:175–180.

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Ryder K, Nathans D (1988). DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55:907–915.

    PubMed  CAS  Google Scholar 

  • Nicoll JAR, Wilkinson D, Holmes C, Steart O, Markham H, Weller RO (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:4448–4452.

    Google Scholar 

  • Niikura T, Yamada M, Chiba T, Aiso S, Matsuoka M, Nishimoto I (2004). Characterization of V642IAβPP-induced cytotoxicity in primary neurons. J Neurosci Res 77:54–62.

    PubMed  CAS  Google Scholar 

  • Okazawa H, Estus S (2002). The JNK/c-jun cascade and Alzheimer’s disease. Am J Alzheimer Dis Other Demen 17:79–88.

    Google Scholar 

  • Otth C, Mendoza-Naranjo A, Mujica L, Zambrano A, Concha II, Maccioni RB (2003). Modulation of JNK and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer’s disease. NeuroReport 14:2403–2409.

    PubMed  CAS  Google Scholar 

  • Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Ferrer I, Portero-Otin M (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation and lipoxidation: effects of Alzheimer’s disease and identification of lipoxidation targets. J Biol Chem 280:21522–21530.

    PubMed  CAS  Google Scholar 

  • Papolla MA, Omar RA, Kim KS, Robalds NK (1992). Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am J Pathol 140:621–628.

    Google Scholar 

  • Pastorcic M, Das HK (2003). Ets transcription factors ER81 and Elk1 regulate the transcription of the human presenilin 1 gene promoter. Brain Res Mol Brain Res 113:57–66.

    PubMed  CAS  Google Scholar 

  • Pei JJ, Braak E, Braak H, Grundque-Iqbal K, Winblad W, Cowburn RF (2001). Localization of active forms of c-Jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J Alzheimer’s Dis 3:41–48.

    CAS  Google Scholar 

  • Perez M, Ribe E, Rubio A, Lim F, Moran MA, Gomez-Ramos P, Ferrer I, Gomez Isla MT, Avila J (2005). Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation. Neuroscience 130:339–347.

    PubMed  CAS  Google Scholar 

  • Perry G, Srinivas R, Nunomura A, Smith MA (2003). The role of oxidative mechanisms in neurodegenerative diseases. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders (Dickson D, ed.), pp. 8–10. Basel: ISN Neuropath Press.

    Google Scholar 

  • Pocock JM, Liddle AC (2001). Microglial signaling cascades in neurodegenerative disease. Progr Brain Res 132:555–565.

    CAS  Google Scholar 

  • Pozas E, Aguado F, Ferrer I (1999). Localization and expression of Jun-like immunoreactivity in apoptotic neurons induced by colchicines administration in vivo and in vitro depends on the antisera used. Acta Neuropathol 98:119–128.

    PubMed  CAS  Google Scholar 

  • Pozas E, Ballabriga J, Planas AM, Ferrer I (1997). Kainic acid-induced excitotoxicity is associated with a complex c-Fos and c-Jun response which does not preclude either cell death or survival. J Neurobiol 33:232–246.

    PubMed  CAS  Google Scholar 

  • Puig B, Gómez-Isla T, Ribe E, Cuadrado M, Ferrer I (2004). Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P) links oxidative stress and tau hyperphosphorylation in neurites surrounding Aβ plaques in APP Tg2576 mice. Neuropathol Appl Neurobiol 30:491–502.

    PubMed  CAS  Google Scholar 

  • Puig B, Viñals F, Ferrer I (2004). AActive stress kinase p38 enhances and perpetuates abnormal tau phosphorylation and deposition in Pick’s disease. Acta Neuropathol 107:185–189.

    PubMed  CAS  Google Scholar 

  • Quitschke W, Golgaber D (1992). The amyloid protein precursor promoter. A region essential for transcriptional activity contains a nuclear factor binding domain. J Biol Chem 267:17362–17368.

    PubMed  CAS  Google Scholar 

  • Raingeaud J, Gupta S, Rogers J, Dickens M, Han J, Ulevitch RJ, Davis RJ (1995). Pro-inflammatory cytokines and environmental stress causes p38 MAP kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270:7420–7426.

    PubMed  CAS  Google Scholar 

  • Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ (1996). MKK3-and MKK6-regulated gene expression is mediated by p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16:1247–1255.

    PubMed  CAS  Google Scholar 

  • Rauscher FJ, Sambucetti LC, Curran T Distel RJ, Spegelman BM (1988). Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 52:471–480.

    PubMed  CAS  Google Scholar 

  • Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH (2000). Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and p38, and glycogen synthase kinase-3β. J Neurochem 74:1587–1595.

    PubMed  CAS  Google Scholar 

  • Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH (1997a). Reactivating kinase/p38 phosphorylates tau protein in vitro. J Neurochem 69:191–198.

    PubMed  CAS  Google Scholar 

  • Reynolds CH, Utton MA, Gibb GM, Yates A, Anderton BH (1997b). Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates tau protein. J Neurochem 68:1736–1744.

    PubMed  CAS  Google Scholar 

  • Ribera J, Ayala V, Esquerda JE (2002). c-Jun-like immunoreactivity in apoptosis is the result of a cross-reaction with neoantigenic sites exposed by caspase-3-mediated proteolysis. J Histochem Cytochem 50:961–972.

    PubMed  CAS  Google Scholar 

  • Robinson MJ, Cobb MH (1997). Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186.

    PubMed  CAS  Google Scholar 

  • Rogaev EI, Lukiw WJ, Vaula G, Haines JL, Rogaeva EA, Tsuda T, Alexandrova N, Liang Y, Mortilla M, Amaducci L (1993). Analysis of the c-Fos gene on chromosome 14 and the promoter of the amyloid precursor protein gene in familial Alzheimer’s disease. Neurology 43:2275–2279.

    PubMed  CAS  Google Scholar 

  • Sahara N, Vega IE, Ishizawa T, Lewis J, McGowan E, Hutton M, Dickson D, Yen SH (2004). Phosphorylated p38MAPK specific antibodies cross-react with sarkosyl-insoluble hyperphosphorylated tau proteins. J Neurochem 90:829–838.

    PubMed  CAS  Google Scholar 

  • Salbaum JM, Weidemann A, Masters CL, Beyreuther K (1989). The promoter of Alzheimer’s disease amyloid A4 precursor gene. Progr Clin Biol Res 317:277–283.

    CAS  Google Scholar 

  • Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481.

    PubMed  CAS  Google Scholar 

  • Sanz O, Estrada A, Ferrer I, Planas AM (1997). Differential cellular distribution and dynamics of HSP-70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience 80:221–232.

    PubMed  CAS  Google Scholar 

  • Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW (2002). Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J Neurosci 22:3376–3385.

    PubMed  CAS  Google Scholar 

  • Scheinfeld MH, Roncarati R, Vito P, Lopez PA, Abdellah M, D’Adamio L (2002). Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer’s β-amyloid precursor protein (APP). J Biol Chem 277:3767–3775.

    PubMed  CAS  Google Scholar 

  • Selznick LA, Holtnman DM, Han BH, Gökden M, Srinavasan AN, Jonson EM, Roth KA (1999). In situ immunodetection of neuronal caspase-3 activation in Alzheimer’s disease. J Neuropathol Exp Neurol 58:1020–1026.

    PubMed  CAS  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861.

    PubMed  CAS  Google Scholar 

  • Shoji M, Iwakami N, Takeuchi S, Waragai M, Suzuki M, Kanazawa I, Lippa CF, Ono S, Okazawa H (2000). JNK activation is associated with intracellular β-amyloid accumulation. Brain Res Mol Brain Res 85:221–233.

    PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 88:10540–10543.

    PubMed  CAS  Google Scholar 

  • Smith MA, Richey PL, Taneda S, Kutty RK, Sayre LM, Monnier VM, Perry G (1994). Advanced Maillard end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann NY Acad Sci 738:447–454.

    PubMed  CAS  Google Scholar 

  • Soriano MA, Ferrer I, Rodriguez-Farre E, Planas AM (1995). Expression of c-fos and inducible hsp-70 mRNA following a transient episode of focal ischemia that had non-lethal effects on the rat brain. Brain Res 670:317–320.

    PubMed  CAS  Google Scholar 

  • Sun A, Liu M, Nguyen XV, Bing G (2003). P38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp Neurol 183:394–405.

    PubMed  CAS  Google Scholar 

  • Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S (2004). Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19:2711–2719.

    PubMed  Google Scholar 

  • Tamagno E, Robino G, Obbili A, Bardini P, Aragno M, Parola M, Danni O (2003). H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp Neurol 180:144–155.

    PubMed  CAS  Google Scholar 

  • Tan Y, Rouse JR, Zhang A, Cariati S, Boccia C, Cohen P, Comb MJ (1996). FGF and stress regulated CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15:4629–4642.

    PubMed  CAS  Google Scholar 

  • Tanaka S, Takehashi M, Matoh N, Iida S, Suzuki T, Futaki S, Hamada H, Masliah E, Sugiura Y, Ueda K (2002). Generation of reactive oxygen species and activation of NFκB by non-Aβ component of Alzheimer’s disease amyloid. J Neurochem 82:305–315.

    PubMed  CAS  Google Scholar 

  • Taru H, Iijima K, Hase M, Kirino Y, Yagi Y, Suzuki T (2002). Interactions of Alzheimer’s amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem 277:20070–20078.

    PubMed  CAS  Google Scholar 

  • Trejo J, Massamiri T, Deng T, Dewji NN, Bayney RM, Brown JH (1994). A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer’s β-amyloid precursor protein gene. J Biol Chem 269:1682–1690.

    Google Scholar 

  • Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML, Greene LA (2001). β-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 77:157–164.

    PubMed  CAS  Google Scholar 

  • van Dam H, Duyndam M, Rottier R, Bosch A, De Vries-Smits L, Herrlich P, Zantema A, Angel P, van der Eb AJ (1993). Heterodimer formation of c-Jun and ATF-2 is responsible for induction of c-Jun by the 243 amino acid adenovirus EIA protein. EMBO J 12:479–487.

    PubMed  Google Scholar 

  • van Leuven F (2000). Single and multiple transgenic mice as models for Alzheimer’s disease. Progr Neurobiol 61:305–312.

    PubMed  Google Scholar 

  • Vélez-Pardo C, Ospina GG, Jiménez del Rio M (2002). Aβ [25–35] peptides and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NFκB, p53 and c-Jun. Neurotoxicology 23:351–365.

    PubMed  Google Scholar 

  • Wei W, Norton DD, Wang X, Kusiak JW (2002). Aβ17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125:2036–2043.

    PubMed  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607.

    PubMed  CAS  Google Scholar 

  • Yamada T, Yoshiyama Y, Kawaguchi N (1997). Expression of activating transcription factor-2 (ATF-2), one of the cyclic AMP response element (CRE) binding proteins, in Alzheimer disease and non-neurological brain tissues. Brain Res 749:329–334.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Gaynor RB (2001). Role of NFκB pathway in the pathogenesis of human disease states. Curr Mol Med 1:287–296.

    PubMed  CAS  Google Scholar 

  • Yamamoto-Sasaki M, Ozawa H, Saito T, Rosler M, Riederer P (1999). Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of Alzheimer type. Brain Res 824:300–303.

    PubMed  CAS  Google Scholar 

  • Yang D, Tournier CM, Wysk M, Lu HT, Xu J, Davis RJ, Flavell RA (1997). Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci USA 94:3004–3009.

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Arai K, Hattori T (2001). Enhanced expression of Iκb with neurofibrillary pathology in Alzheimer’s disease. Neuroreport 12:2641–2645.

    PubMed  CAS  Google Scholar 

  • Zhang P, Hirsch EC, Damier P, Duyckaerts C, Javoy-Agid F (1992). c-fos protein-like immunoreactivity: distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer’s disease. Neuroscience 46:9–21.

    PubMed  CAS  Google Scholar 

  • Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA (2000). Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2:463–465.

    PubMed  CAS  Google Scholar 

  • Zhu X, Lee HG, Raina AK, Perry G, Smith MA (2002). The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11:270–281.

    PubMed  CAS  Google Scholar 

  • Zhu X, Ogawa O, Wang Y, Perry G, Smith MA (2003a). JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease. J Neurochem 85:87–93.

    PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Lee HG, Chao M, Nunomura A, Tabaton M, Petersen RB, Perry G, Smith MA (2003b). Oxidative stress and neuronal adaptation in Alzheimer disease: The role of SAPK pathways. Antioxid Redox Signal 5:571–576.

    PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001a). Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441.

    PubMed  CAS  Google Scholar 

  • Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000). Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 59:880–888.

    PubMed  CAS  Google Scholar 

  • Zhu X, Rottkamp CA, Hartzler A, Sun Z, Takeda A, Boux H, Shimohama S, Perry G, Smith MA (2001b). Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. J Neurochem 79:311–318.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ferrer, I., Santpere, G., Puig, B. (2006). Immediate Early Genes, Inducible Transcription Factors and Stress Kinases in Alzheimer’s Disease. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_13

Download citation

Publish with us

Policies and ethics