Skip to main content
  • 590 Accesses

15. Conclusions

The data reviewed here demonstrate the paradoxical involvement of the bZIP transcription factors in the mechanisms mediating nerve cell death as well as those promoting survival and repair after injury. Precisely, how these transcription factors regulate such diverse cellular processes awaits clarification but differential phosphorylation and dimer partner availability are likely to be key factors. For example, c-Jun-mediated regeneration is associated with selective phosphorylation of Ser73 and dimerization with ATF-3, whereas Ser63 phosphorylation and dimerization with ATF-2 can (at least in some cases) result in c-Jun-mediated cell death. Similarly, the duration of CREB phosphorylation appears to be related to its function, since prolonged phosphorylation is associated with neuroprotection, whereas dephosphorylation is associated with neurotoxicity. Whether these observations represent fundamental conserved responses to injury or are dependent on the insult and cell-type remains to be determined. However, these transcription factors and the signaling mechanisms they control represent potential targets for the design of new therapies to prevent nerve cell death and promote survival and repair after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WC, Logan B, Greenwood JM, Dragunow M (2002). Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22:9626–9634.

    PubMed  CAS  Google Scholar 

  • Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994). Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci USA 91:10049–10053.

    PubMed  CAS  Google Scholar 

  • Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O, Rechavi G, Galun E, Honigman A (2004). A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res 64:1338–1346.

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Cummings BJ, Cotman CW (1994). Increased immunoreactivity for Jun-and Fosrelated proteins in Alzheimer’s disease: association with pathology. Exp Neurol 125:286–295.

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Su JH, Cotman CW (1996). DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16:1710–1719.

    PubMed  CAS  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF (1999). Amino-terminal phosphorylation of c-Jun regulates stressinduced apoptosis and cellular proliferation. Nat Genet 21:326–329.

    PubMed  CAS  Google Scholar 

  • Broude E, McAtee M, Kelley MS, Bregman BS (1997). c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 148:367–377.

    PubMed  CAS  Google Scholar 

  • Budd DC, Spragg EJ, Ridd K, Tobin AB (2004). Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway. Biochem J 381:43–49.

    PubMed  CAS  Google Scholar 

  • Budd DC, McDonald J, Emsley N, Cain K, Tobin AB (2003). The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 278:19565–19573.

    PubMed  CAS  Google Scholar 

  • Carulli D, Buffo A, Strata P (2004). Reparative mechanisms in the cerebellar cortex. Prog Neurobiol 72:373–398.

    PubMed  CAS  Google Scholar 

  • Carulli D, Buffo A, Botta C, Altruda F, Strata P (2002). Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun. Eur J Neurosci 16:105–118.

    PubMed  Google Scholar 

  • Ciani E, Guidi S, Della Valle G, Perini G, Bartesaghi R, Contestabile A (2002). Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation. J Biol Chem 277:49896–49902.

    PubMed  CAS  Google Scholar 

  • Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003). Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci USA 100:9023–9027.

    PubMed  CAS  Google Scholar 

  • De Sarno P, Shestopal SA, King TD, Zmijewska A, Song L, Jope RS (2003). Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 278:11086–11093.

    PubMed  Google Scholar 

  • Dragunow M (1992). Axotomized medial septal-diagonal band neurons express Jun-like immunoreactivity. Brain Res Mol Brain Res 15:141–144.

    PubMed  CAS  Google Scholar 

  • Dragunow M (1996). A role for immediate-early transcription factors in learning and memory. Behav Genet 26:293–299.

    PubMed  CAS  Google Scholar 

  • Dragunow M (2004). CREB and neurodegeneration. Front Biosci 9:100–103.

    PubMed  CAS  Google Scholar 

  • Dragunow M, Preston K (1995). The role of inducible transcription factors in apoptotic nerve cell death. Brain Research—Brain Research Reviews 21:1–28.

    PubMed  CAS  Google Scholar 

  • Dragunow M, Henderson C (1999). An in vitro human model system to investigate muscarinic receptor mediated induction of the CREB and Krox 24 memory-related transcription factors. Keynote Symposium on Molecular Mechanism’s of Alzheimer’s Disease, Taos, New Mexico.

    Google Scholar 

  • Dragunow M, Abraham W, Hughes P (1996). Activation of NMDA and muscarinic receptors induces nur-77 mRNA in hippocampal neurons. Brain Res Mol Brain Res 36:349–356.

    PubMed  CAS  Google Scholar 

  • Dragunow M, Young D, Hughes P, MacGibbon G, Lawlor P, Singleton K, Sirimanne E, Beilharz E, Gluckman P (1993). Is c-Jun involved in nerve cell death following status epilepticus and hypoxicischaemic brain injury? Brain Res Mol Brain Res 18:347–352.

    PubMed  CAS  Google Scholar 

  • Dragunow M, MacGibbon GA, Lawlor P, Butterworth N, Connor B, Henderson C, Walton M, Woodgate A, Hughes P, Faull RL (1997). Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 8:223–265.

    PubMed  CAS  Google Scholar 

  • Dragunow M, Xu R, Walton M, Woodgate A, Lawlor P, MacGibbon GA, Young D, Gibbons H, Lipski J, Muravlev A, Pearson A, During M (2000). c-Jun promotes neurite outgrowth and survival in PC12 cells. Brain Research Molecular Brain Research 83:20–33.

    PubMed  CAS  Google Scholar 

  • Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM, Jr. (1994). Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. Journal of Cell Biology 127:1717–1727.

    PubMed  CAS  Google Scholar 

  • Faris M, Kokot N, Latinis K, Kasibhatla S, Green DR, Koretzky GA, Nel A (1998). The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. Journal of Immunology 160:134–144.

    CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995). Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891.

    PubMed  CAS  Google Scholar 

  • Francis JS, Dragunow M, During MJ (2004). Over expression of ATF-3 protects rat hippocampal neurons from in vivo injection of kainic acid. Brain Res Mol Brain Res 124:199–203.

    PubMed  CAS  Google Scholar 

  • Ginham R, Harrison DC, Facci L, Skaper S, Philpott KL (2001). Upregulation of death pathway molecules in rat cerebellar granule neurons undergoing apoptosis. Neurosci Lett 302:113–116.

    PubMed  CAS  Google Scholar 

  • Goldbaum O, Oppermann M, Handschuh M, Dabir D, Zhang B, Forman MS, Trojanowski JQ, Lee VM, Richter-Landsberg C (2003). Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid. J Neurosci 23:8872–8880.

    PubMed  CAS  Google Scholar 

  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004). Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634.

    PubMed  CAS  Google Scholar 

  • Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K (1995). Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65:732–738.

    PubMed  CAS  Google Scholar 

  • Greenwood JM, Dragunow M (2002). Muscarinic receptor-mediated phosphorylation of cyclic AMP response element binding protein in human neuroblastoma cells. J Neurochem 82:389–397.

    PubMed  CAS  Google Scholar 

  • Greenwood JM, Curtis P, Logan B, Lawlor P, Dragunow M (2004). Immediate-early genes. In: From Messengers to Molecules: Memories are made of These (Reidel G, Platt B, eds), pp. 506–513. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004). Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531.

    PubMed  CAS  Google Scholar 

  • Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL (1995). A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14:927–939.

    PubMed  CAS  Google Scholar 

  • Hara T, Hamada J, Yano S, Morioka M, Kai Y, Ushio Y (2003). CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J Neurochem 86:805–814.

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414.

    PubMed  CAS  Google Scholar 

  • Harris CA, Johnson EM, Jr. (2001). BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760.

    PubMed  CAS  Google Scholar 

  • Helbecque N, Abderrahamani A, Meylan L, Riederer B, Mooser V, Miklossy J, Delplanque J, Boutin P, Nicod P, Haefliger JA, Cottel D, Amouyel P, Froguel P, Waeber G (2003). Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer’s disease. Mol Psychiatry 8:363, 413–422.

    Google Scholar 

  • Hensley K, Floyd RA, Zheng NY, Nael R, Robinson KA, Nguyen X, Pye QN, Stewart CA, Geddes J, Markesbery WR, Patel E, Johnson GV, Bing G (1999). p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem 72:2053–2058.

    PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Research-Brain Research Reviews 28:370–490.

    PubMed  CAS  Google Scholar 

  • Herdegen T, Claret FX, Kallunki T, Martin-Villalba A, Winter C, Hunter T, Karin M (1998). Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J Neurosci 18:5124–5135.

    PubMed  CAS  Google Scholar 

  • Huang Y, Hutter D, Liu Y, Wang X, Sheikh MS, Chan AM, Holbrook NJ (2000). Transforming growth factor-beta 1 suppresses serum deprivation-induced death of A549 cells through differential effects on c-Jun and JNK activities. J Biol Chem 275:18234–18242.

    PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1993). Muscarinic receptor-mediated induction of Fos protein in rat brain. Neurosci Lett 150:122–126.

    PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1994). Activation of pirenzepine-sensitive muscarinic receptors induces a specific pattern of immediate-early gene expression in rat brain neurons. Brain Res Mol Brain Res 24:166–178.

    PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995). Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacological Reviews 47:133–178.

    PubMed  CAS  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004). JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670.

    PubMed  CAS  Google Scholar 

  • Itano Y, Ito A, Uehara T, Nomura Y (1996). Regulation of Bcl-2 protein expression in human neuroblastoma SH-SY5Y cells: positive and negative effects of protein kinases C and A, respectively. J Neurochem 67:131–137.

    PubMed  CAS  Google Scholar 

  • Iwadate Y, Sakaida T, Hiwasa T, Nagai Y, Ishikura H, Takiguchi M, Yamaura A (2004). Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res 64:2496–2501.

    PubMed  CAS  Google Scholar 

  • Jenkins R, McMahon SB, Bond AB, Hunt SP (1993). Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat. Eur J Neurosci 5:751–759.

    PubMed  CAS  Google Scholar 

  • Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M, Kitajima S (2002). Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 277:39025–39034.

    PubMed  CAS  Google Scholar 

  • Keck S, Nitsch R, Grune T, Ullrich O (2003). Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85:115–122.

    PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000). Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439.

    PubMed  CAS  Google Scholar 

  • Kins S, Kurosinski P, Nitsch RM, Gotz J (2003). Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am J Pathol 163:833–843.

    PubMed  CAS  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P (2003). A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA 100:15184–15189.

    PubMed  CAS  Google Scholar 

  • Kumagae Y, Zhang Y, Kim OJ, Miller CA (1999). Human c-Jun N-terminal kinase expression and activation in the nervous system. Brain Res Mol Brain Res 67:10–17.

    PubMed  CAS  Google Scholar 

  • Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K (2005). Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 25:1137–1148.

    PubMed  CAS  Google Scholar 

  • Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004). cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623.

    PubMed  CAS  Google Scholar 

  • Lei K, Davis RJ (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437.

    PubMed  CAS  Google Scholar 

  • Leloup C, Michaelson DM, Fisher A, Hartmann T, Beyreuther K, Stein R (2000). M1 muscarinic receptors block caspase activation by phosphoinositide 3-kinase-and MAPK/ERK-independent pathways. Cell Death Differ 7:825–833.

    PubMed  CAS  Google Scholar 

  • Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M (1999). Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19:751–763.

    PubMed  CAS  Google Scholar 

  • Leppa S, Saffrich R, Ansorge W, Bohmann D (1998). Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. Embo J 17:4404–4413.

    PubMed  CAS  Google Scholar 

  • Li L, Feng Z, Porter AG (2004). JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells. J Biol Chem 279:4058–4065.

    PubMed  CAS  Google Scholar 

  • Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T (1996). ATF3 gene. Genomic organization, promoter, and regulation. Journal of Biological Chemistry 271:1695–1701.

    CAS  Google Scholar 

  • Lindenboim L, Pinkas-Kramarski R, Sokolovsky M, Stein R (1995). Activation of muscarinic receptors inhibits apoptosis in PC12M1 cells. J Neurochem 64:2491–2499.

    PubMed  CAS  Google Scholar 

  • Lindwall C, Dahlin L, Lundborg G, Kanje M (2004). Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Mol Cell Neurosci 27:267–279.

    PubMed  CAS  Google Scholar 

  • Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M (2001). Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21:9204–9213.

    PubMed  CAS  Google Scholar 

  • MacGibbon GA, Lawlor PA, Hughes P, Young D, Dragunow M (1995). Differential expression of inducible transcription factors in basal ganglia neurons. Brain Res Mol Brain Res 34:294–302.

    PubMed  CAS  Google Scholar 

  • MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M (1997). Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Experimental Neurology 147:316–332.

    PubMed  CAS  Google Scholar 

  • Masaki R, Saito T, Yamada K, Ohtani-Kaneko R (2000). Accumulation of phosphorylated neurofilaments and increase in apoptosis-specific protein and phosphorylated c-Jun induced by proteasome inhibitors. J Neurosci Res 62:75–83.

    PubMed  CAS  Google Scholar 

  • Messer WS, Jr. (2002). The utility of muscarinic agonists in the treatment of Alzheimer’s disease. J Mol Neurosci 19:187–193.

    PubMed  CAS  Google Scholar 

  • Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS (1998). Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J Biol Chem 273:19080–19085.

    PubMed  CAS  Google Scholar 

  • Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003). Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23:5187–5196.

    PubMed  CAS  Google Scholar 

  • Namgung U, Xia Z (2000). Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. Journal of Neuroscience 20:6442–6451.

    PubMed  CAS  Google Scholar 

  • Napankangas U, Lindqvist N, Lindholm D, Hallbook F (2003). Rat retinal ganglion cells upregulate the pro-apoptotic BH3-only protein Bim after optic nerve transection. Brain Res Mol Brain Res 120:30–37.

    PubMed  CAS  Google Scholar 

  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004). Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332.

    PubMed  CAS  Google Scholar 

  • Pearson AG, Curtis MA, Waldvogel HJ, Faull RL, Dragunow M (2005). Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis. Neuroscience 133:437–451.

    PubMed  CAS  Google Scholar 

  • Pearson AG, Gray CW, Pearson JF, Greenwood JM, During MJ, Dragunow M (2003). ATF3 enhances c-Jun-mediated neurite sprouting. Brain Res Mol Brain Res 120:38–45.

    PubMed  CAS  Google Scholar 

  • Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002). Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109:45–55.

    PubMed  CAS  Google Scholar 

  • Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003). Okadaic-acidinduced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol 163:845–858.

    PubMed  CAS  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674.

    PubMed  CAS  Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EM, Jr. (2003). JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914.

    PubMed  CAS  Google Scholar 

  • Raivich G, Bohatschek M, Da Costa C, Iwata O, Galiano M, Hristova M, Nateri AS, Makwana M, Riera-Sans L, Wolfer DP, Lipp HP, Aguzzi A, Wagner EF, Behrens A (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43:57–67.

    PubMed  CAS  Google Scholar 

  • Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999). Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Puertas R, Pascual J, Vilaro T, Pazos A (1997). Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer’s disease. Synapse 26:341–350.

    PubMed  CAS  Google Scholar 

  • Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, Head E (2002). Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiol Dis 11:341–354.

    PubMed  CAS  Google Scholar 

  • Rohn TT, Head E, Su JH, Anderson AJ, Bahr BA, Cotman CW, Cribbs DH (2001). Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am J Pathol 158:189–198.

    PubMed  CAS  Google Scholar 

  • Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV (2000). ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci 20:977–985.

    PubMed  CAS  Google Scholar 

  • Schwarz CS, Seyfried J, Evert BO, Klockgether T, Wullner U (2002). Bcl-2 up-regulates ha-ras mRNA expression and induces c-Jun phosphorylation at Ser73 via an ERK-dependent pathway in PC 12 cells. Neuroreport 13:2439–2442.

    PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2001). AP-1 in cell proliferation and survival. Oncogene 20:2390–2400.

    PubMed  CAS  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1998). Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer disease. J Neuropathol Exp Neurol 57:323–328.

    PubMed  CAS  Google Scholar 

  • Shi L, Gong S, Yuan Z, Ma C, Liu Y, Wang C, Li W, Pi R, Huang S, Chen R, Han Y, Mao Z, Li M (2005). Activity deprivation-dependent induction of the proapoptotic BH3-only protein Bim is independent of JNK/c-Jun activation during apoptosis in cerebellar granule neurons. Neurosci Lett 375:7–12.

    PubMed  CAS  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496.

    PubMed  CAS  Google Scholar 

  • Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H (1999). Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466.

    PubMed  CAS  Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994). Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5:2529–2533.

    PubMed  CAS  Google Scholar 

  • Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S (2004). Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19:2711–2719.

    PubMed  Google Scholar 

  • Takeda M, Kato H, Takamiya A, Yoshida A, Kiyama H (2000). Injury-specific expression of activating transcription factor-3 in retinal ganglion cells and its colocalized expression with phosphorylated c-Jun. Invest Ophthalmol Vis Sci 41:2412–2421.

    PubMed  CAS  Google Scholar 

  • Teber I, Kohling R, Speckmann EJ, Barnekow A, Kremerskothen J (2004). Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC). Brain Res Mol Brain Res 121:131–136.

    PubMed  CAS  Google Scholar 

  • Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K (2000). Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15:170–182.

    PubMed  CAS  Google Scholar 

  • Tsuzuki K, Noguchi K, Mohri D, Yasuno H, Umemoto M, Shimobayashi C, Fukazawa K, Sakagami M (2002). Expression of activating transcription factor 3 and growth-associated protein 43 in the rat geniculate ganglion neurons after chorda tympani injury. Acta Otolaryngol 122:161–167.

    PubMed  CAS  Google Scholar 

  • Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM (2001). PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp Neurol 168:402–412.

    PubMed  CAS  Google Scholar 

  • Walton M, Sirimanne E, Williams C, Gluckman P, Dragunow M (1996). The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res 43:21–29.

    PubMed  CAS  Google Scholar 

  • Walton M, Woodgate AM, Sirimanne E, Gluckman P, Dragunow M (1998). ATF-2 phosphorylation in apoptotic neuronal death. Brain Res Mol Brain Res 63:198–204.

    PubMed  CAS  Google Scholar 

  • Walton M, Woodgate AM, Muravlev A, Xu R, During MJ, Dragunow M (1999a). CREB phosphorylation promotes nerve cell survival. Journal of Neurochemistry 73:1836–1842.

    PubMed  CAS  Google Scholar 

  • Walton M, Henderson C, Mason-Parker S, Lawlor P, Abraham WC, Bilkey D, Dragunow M (1999b). Immediate early gene transcription and synaptic modulation. J Neurosci Res 58:96–106.

    PubMed  CAS  Google Scholar 

  • Walton MR, Dragunow I (2000). Is CREB a key to neuronal survival? Trends Neurosci 23:48–53.

    PubMed  CAS  Google Scholar 

  • Wang W, Shi L, Xie Y, Ma C, Li W, Su X, Huang S, Chen R, Zhu Z, Mao Z, Han Y, Li M (2004). SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48:195–202.

    PubMed  CAS  Google Scholar 

  • Watson A, Eilers A, Lallemand D, Kyriakis J, Rubin LL, Ham J (1998). Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. Journal of Neuroscience 18:751–762.

    PubMed  CAS  Google Scholar 

  • Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J (2001). Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29:629–643.

    PubMed  CAS  Google Scholar 

  • Woodgate A, Walton M, MacGibbon GA, Dragunow M (1999). Inducible transcription factor expression in a cell culture model of apoptosis. Brain Research Molecular Brain Research 66:211–216.

    PubMed  CAS  Google Scholar 

  • Yan GM, Lin SZ, Irwin RP, Paul SM (1995). Activation of muscarinic cholinergic receptors blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 47:248–257.

    PubMed  CAS  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870.

    PubMed  CAS  Google Scholar 

  • Zeidman R, Pettersson L, Sailaja PR, Truedsson E, Fagerstrom S, Pahlman S, Larsson C (1999). Novel and classical protein kinase C isoforms have different functions in proliferation, survival and differentiation of neuroblastoma cells. Int J Cancer 81:494–501.

    PubMed  CAS  Google Scholar 

  • Zhang S, Liu J, Dragunow M, Cooper GJ (2003). Fibrillogenic amylin evokes islet beta-cell apoptosis through linked activation of a caspase cascade and JNK1. J Biol Chem 278:52810–52819.

    PubMed  CAS  Google Scholar 

  • Zhang S, Liu J, MacGibbon G, Dragunow M, Cooper GJ (2002). Increased expression and activation of c-Jun contributes to human amylin-induced apoptosis in pancreatic islet beta-cells. J Mol Biol 324:271–285.

    PubMed  CAS  Google Scholar 

  • Zhang S, Liu H, Liu J, Tse C, Dragunow M, Cooper GJS (2005). Activation of ATF-2 by p38MAPK/JNK1 in apoptosis induced by human amylin in pancreatic islet beta-cells. Diabetalogica, submitted.

    Google Scholar 

  • Zhu X, Ogawa O, Wang Y, Perry G, Smith MA (2003). JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease. J Neurochem 85:87–93.

    PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001). Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Cameron, R., Dragunow, M. (2006). Transcriptional Control of Nerve Cell Death, Survival and Repair. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_12

Download citation

Publish with us

Policies and ethics