Skip to main content

6. Conclusions

The data discussed above indicate that the study of c-fos expression has greatly contributed to our knowledge of the brain processing of stressors. The use of IEGs other than c-fos (e.g., zif268, arc) reveals activation of brain areas not detected with c-fos, even though evaluation of other markers of neuronal activation (for example, phosphorylation of CREB) could be important in generating a complete picture of brain areas activated under stress. The expression of effector IEGs, such as arc, can provide researchers with additional important information concerning brain areas where synaptic plasticity associated to stress exposure may take place. However, much of the IEG response to stress remains to be characterized in order for a complete picture of brain processing of stressors emerges, and this includes: (a) a more complete characterization of the relationship between neuronal depolarization and IEG expression, (b) the description of the effects of neurotransmitters on stress-induced IEG expression (a topic not discussed in the present review), (c) the characterization of neuronal phehotypes activated during the stress response, and (d) the use of complementary approaches (e.g., lesions, tract-tracing studies, region-specific conditional expression or repression of particular IEGs in mutant mice) which should allow for directly testing hypotheses regarding the hierarchical control of the response to stress, an aspect poorly understood in this field, with the exception of the HPA axis. Finally, a more thorough characterization of the functional role of the protein products encoded by IEGs may shed light onto the precise adaptive values that result from their increased expression. This information will likely to reveal key aspects of the neural response to stress and will rival the critical importance of IEG expression in the mapping of brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arckens L (2005). The molecular biology of sensory map plasticity in adult mammals. In: Plasticity in the Visual System: From Genes to Circuits (Pinaud R, Tremere LA, DeWeerd P, eds), pp. 181–203. New York: Springer-Verlag.

    Google Scholar 

  • Armario A, López-Calderón S, Jolín T, Castellanos JM (1986). Sensitivity of anterior pituitary hormones to graded levels of psychological stress. Life Sci 39:471–475.

    Article  PubMed  CAS  Google Scholar 

  • Arnold FJL, Bueno ML, Shiers H, Hancock DC, Evan GI, Herbert J (1992). Expression of c-fos in regions of the basal limbic forebrain following intracerebroventricular corticotropin-releasing factor in unstressed or stressed male rats. Neuroscience 51:377–390.

    Article  PubMed  CAS  Google Scholar 

  • Beck CHM, Fibiger HC (1995). Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci 15:709–720.

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Dallman M (1998). Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039.

    Article  PubMed  CAS  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte BE, Quirion R, Meaney MJ (1989). Role of the central benzodiacepine receptor system in behavioral habituation to novelty. Behav Neurosci 103:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Bonaz B, Rivest S (1998). Effect of a chronic stress on CRF neuronal activity and expression of its type 1 receptor in the rat brain. Am J Physiol 275:R1438–R1449.

    PubMed  CAS  Google Scholar 

  • Campeau S, Dolan D, Akil H, Watson SJ (2002). c-fos mRNA induction in acute and chronic audiogenic stress: possible role of the orbitofrontal cortex in habituation. Stress 5:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Campeau S, Falls WA, Cullinan WE, Helmreich DL, Davis M, Watson SJ (1998). Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78:1087–1104.

    Article  Google Scholar 

  • Campeau S, Watson SJ (1998). Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9:577–588.

    Google Scholar 

  • Cannon W (1929). Organization for physiological homeostasis. Physiol Rev 9:399–431.

    Google Scholar 

  • Chan RKW, Brown ER, Ericsson A, Kovacs KJ, Sawchenko PE (1993). A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuits. J Neurosci 13:5126–5138.

    PubMed  CAS  Google Scholar 

  • Chen X, Herbert J (1995). Regional changes in c-fos expression in the basal forebrain and brainstem during adaptation to repeated stress. Correlations with cardiovascular, hypothermic and endocrine responses. Neuroscience 64:675–685.

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995). Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64:477–505.

    Article  PubMed  CAS  Google Scholar 

  • Curtis AL, Bello NT, Connolly KR, Valentino RJ (2002). Corticotropin-releasing factor neurones of the central nucleus of the amygdala mediate locus coeruleus activation by cardiovascular stress. J Neuroendocrinol 14:667–682.

    Article  PubMed  CAS  Google Scholar 

  • Day HEW, Masini CV, Campeau S (2004). The pattern of brain c-fos mRNA induced by a component of fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), in rats, suggests both systemic and processive stress characteristics. Brain Res 1025:139–151.

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, Buller KM, Day TA (1999). Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala, Eur J Neurosci 11:2312–2322.

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, Buller KM, Day TA (2001). Medullary neurones regulate hypothalamic corticotropinreleasing factor cell responses to an emotional stressor. Neuroscience 105:707–719.

    Article  PubMed  CAS  Google Scholar 

  • Dielenberg RA, Hunt GE, McGregor IS (2001). When a rat smells a cat: the distribution of Fos immunoreactivity in rat brain following exposure to a predator odor. Neuroscience 104:1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Diorio D, Viau V, Menaye MJ (1993). The role of the medial prefrontal cortex (cyngulate gyrus) in the regulation of the hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847.

    PubMed  CAS  Google Scholar 

  • Dumont EC, Kinkead R, Trottier J-F, Gosselin I, Drolet G (2000). Effect of chronic psychogenic stress exposure on enkephalin neuronal activity and expression in the rat hypothalamic paraventricular nucleus. J Neurochem 75:2200–2211.

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Johnson KB, Breese GR (1993). Topographic patterns of brain activity in response to swim stress: assessment by 2-deoxyglucose uptake and expression of Fos-like immunoreactivity. J Neurosci 13:3932–3943.

    PubMed  CAS  Google Scholar 

  • Emmert MH, Herman JP (1999). Differential forebrain c-fos m RNA induction by ether inhalation and novelty: evidence for distinctive stress pathways. Brain Res 845:60–67.

    Article  PubMed  CAS  Google Scholar 

  • Ericsson A, Kovacs KJ, Sawchenko P (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 14:897–913.

    PubMed  CAS  Google Scholar 

  • Figuereido HF, Bruestle A, Bodie B, Dolgas CM, Herman JP (2003). The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci 18:2357–2364.

    Article  Google Scholar 

  • Groves PM, Thompson RF (1970). Habituation: a dual-process theory. Psychol Rev 77:419–450.

    Article  PubMed  CAS  Google Scholar 

  • Guillod-Maximim E, Lorsignol A, Alquier T, Penicaud L (2004). Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J Neuroendocrinol 16:464–471.

    Article  Google Scholar 

  • Helfferich F, Palkovits M (2003). Acute audiogenic stress-induced activation of CRH neurons in the hypothalamic paraventricular nucleus and catecholaminergic neurons in the medulla oblongata. Brain Res 975:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490.

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE (1997). Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. TINS 20:78–84.

    PubMed  CAS  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003). Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180.

    Article  PubMed  CAS  Google Scholar 

  • Hinks GL, Brown P, Field M, Poat JA, Hughes J (1996). The anxiolytics CI-988 and chlordiazepoxide fail to reduce immediate early gene mRNA stimulation following exposure to the rat elevated X-maze. Eur J Pharmacol 312:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GE, Le W-W, Abbud R, Lee W-S, Smith MS (1994). Use of fos-related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation. Brain Res 654:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Honkaniemi J (1992). Colocalization of peptide-and tyrosine hydroxylase-like immunoreactivities with Fos-immunoreactive neurons in rat central amygdaloid nucleus after immobilization stress. Brain Res 598:107–113.

    Article  PubMed  CAS  Google Scholar 

  • Honkaniemi J, Kainu T, Ceccatelli S, Rechardt L, Hokfelt T, Pelto-Huikko M (1992). Fos and jun in rat central amygdaloid nucleus and paraventricular nucleus after stress. NeuroReport 3:849–852.

    PubMed  CAS  Google Scholar 

  • Honkaniemi J, Kononen J, Kainu T, Pykonen I, Pelto-Huikko M (1994). Induction of multiple immediate early genes in rat hypothalamic paraventricular nucleus after stress. Mol Brain Res 25:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Imaki T, Naruse M, Harada S, Chikada N, Nakajima K, Yoshimoto T, Demura H (1998). Stressinduced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats. J Neuroendocrinol 10:635–643.

    Article  PubMed  CAS  Google Scholar 

  • Imaki T, Shibasaki T, Chikada N, Harada S, Naruse M, Demura H (1996). Different expression of immediate-early genes in the rat paraventricular nucleus induced by stress: relation to corticotropin-releasing factor gene transcription. Endocrin J 43:629–638.

    CAS  Google Scholar 

  • Imaki T, Shibasaki T, Demura H (1995). Regulation of gene expression in the central nervous system by stress: molecular pathways of stress responses. Endocrin J 42:121–130.

    CAS  Google Scholar 

  • Imaki T, Shibasaki T, Hotta M, Demura H (1992). Early-induction of c-fos precedes increased expression of corticotropin-releasing factor messenger ribonucleic acid in the paraventricular nucleus after immobilization stress. Endocrinology 131:240–246.

    Article  PubMed  CAS  Google Scholar 

  • Imaki T, Shibasaki T, Hotta M, Demura H (1993). Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses: comparison with pattern of c-fos mRNA induction after stress. Brain Res 616:114–125.

    Article  PubMed  CAS  Google Scholar 

  • Kinzig KP, D’Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueiredo HF, Murphy EK, Seeley RJ (2003). CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 23:6163–6170.

    PubMed  CAS  Google Scholar 

  • Kollack-Walker S, Don C, Watson SJ, Akil H (1999). Differential expression of c-fos mRNA within neurocircuits of male hamsters exposed to acute and chronic defeat. J Neuroendocrinol 11:547–559.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs KJ (1998). c-fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs KJ, Sawchenko PE (1996). Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 16:262–273.

    PubMed  CAS  Google Scholar 

  • Lee S, Barbanel G, Rivier C (1995). Systemic endotoxin increases steady-state gene expression in the hypothalamic nitric oxide synthase: comparison with corticotropin-releasing factor and vasopressin gene transcripts. Brain Res 705:136–148.

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Rivier C (1998). Interaction between corticotropin-releasing factor and nitric oxide in mediating the response of the rat hypothalamus to immune and non-immune stimuli. Mol Brain Res 57: 54–62.

    Article  PubMed  CAS  Google Scholar 

  • Li H-Y, Ericsson A, Sawchenko PE (1996). Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc Natl Acad Sci USA 93:2359–2364.

    Article  PubMed  CAS  Google Scholar 

  • Li H-Y, Sawchenko PE (1998). Hypothalamic effector neurons and extended circuitries activated in neurogenic stress: a comparison of footshock effects exerted acutely, chronically, and in animals with controlled glucocorticoid levels. J Comp Neurol 393:244–266.

    Article  PubMed  CAS  Google Scholar 

  • Lino de Oliveira C, Guimaraes FS, Del Bel EA (1997). c-jun mRNA expression in the hippocampal formation induced by restraint stress. Brain Res 753:202–208.

    Article  PubMed  CAS  Google Scholar 

  • Luckman SM, Dyball RE, Leng G (1994). Induction of c-fos expression in hypothalamic magnocellular neurons requires synaptic activation and not simply increased spike activity. J Neurosci 14:4825–4830.

    PubMed  CAS  Google Scholar 

  • Ludwig M, Johnstone LE, Neumann I, Landgraf R, Russell JA (1997). Direct hypertonic stimulation of the rat supraoptic nucleus increases c-fos expression in glial cells rather than magnocellular neurones. Cell Tissue Res 287:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445.

    Article  PubMed  CAS  Google Scholar 

  • Mansi JA, Rivest S, Drolet G (1998). Effect of immobilization stress on transcriptional activity of inducible immediate-early genes, corticotropin-releasing factor, its type 1 receptor, and enkephalin in the hypothalamus of borderline hypertensive rats. J Neurochem 70:1556–1566.

    Article  PubMed  CAS  Google Scholar 

  • Márquez C, Belda X, Armario A (2002). Post-stress recovery of the pituitary-adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Res 926:181–185.

    Article  PubMed  Google Scholar 

  • Martí O, Armario A (1988). Anterior pituitary response to stress: time-related changes and adaptation. Int J Devl Neurosci 16:241–260.

    Article  Google Scholar 

  • Martinez M, Phillips PJ, Herbert J (1998). Adaptation in patterns of c-fos expression in the rat brain associated with exposure to either single or repeated social stress in male rats. Eur J Neurosci 10:20–33.

    Article  PubMed  CAS  Google Scholar 

  • McDougall SJ, Widdop RE, Lawrence AJ (2004). Medial prefrontal cortical integration of psychological stress in rats. Eur J Neurosci 20:2430–2440.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, BS (2000). The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189.

    Article  PubMed  CAS  Google Scholar 

  • Melia KR, Ryabinin AE, Schroeder R, Bloom FE, Wilson MC (1994). Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci 14:5929–5938.

    PubMed  CAS  Google Scholar 

  • Moga DE, Calhoun ME, Chowdhury A, Worley P, Morrison JH, Shapiro ML (2003). Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125:7–11.

    Article  CAS  Google Scholar 

  • Morrow BA, Elsworth JD, Lee EJK, Roth RH (2000). Divergent effects of putative anxiolytics on stress-induced Fos expression in the mesoprefrontal system of the rat. Synapse 36:143–154.

    Article  PubMed  CAS  Google Scholar 

  • Nagahara AH, Handa RJ (1997). Age-related changes in c-fos mRNA induction after open-field exposure in the rat brain. Neurobiol Aging 18:45–55.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M (2003). Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 344:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R, Frotscher M (1992). Reduction of posttraumatic transneuronal “early gene” activation and dendritic atrophy by N-methyl-D-aspartate receptor antagonist MK-801. Proc Natl Acad Sci USA 89:5917–5200.

    Article  Google Scholar 

  • Ogilvie KM, Lee S, Rivier C (1998). Divergence in the expression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes. J Neurosci 18:4344–4352.

    PubMed  CAS  Google Scholar 

  • Olsson T, Hakansson A, Seckl JR (1997). Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons. Neuroscience 76:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Ons S, Martí O, Armario A (2004). Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA. J Neurochem 89:111–1118.

    Article  CAS  Google Scholar 

  • Pacak K, Palkovits M (2001). Stressor-specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548.

    Article  PubMed  CAS  Google Scholar 

  • Papa M, Pellicano MP, Welz H, Sadile AG (1993). Distributed changes in c-Fos and c-Jun immunoreactivity in the rat brain associated with arousal and habituation to novelty. Brain Res Bull 32:509–515.

    Article  PubMed  CAS  Google Scholar 

  • Passerin AM, Cano G, Rabin BS, Delano BA, Napier JL, Sved AF (2000). Role of locus coeruleus in foot shock-evoked Fos expression in rat brain. Neuroscience 101:1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Perrotti LI, Hadeishi Y, Ulery PG, Barrot M, Monteggia L, Duman RS, Nestler EJ (2004). Induction of ΔFosB in reward-related brain structures after chronic stress. J Neurosci 24:10594–10602.

    Article  PubMed  CAS  Google Scholar 

  • Pezzone MA, Lee W-S, Hoffman GE, Rabin BS (1992). Induction of c-Fos immunoreactivity in the rat forebrain by conditioned and unconditioned aversive stimuli. Brain Res 597:41–50.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R (2005). Critical calcium-regulated biochemical and gene expression programs involved in experience-dependent plasticity. In: Plasticity in the Visual System: From Genes to Circuits (Pinaud R, Tremere LA, De Weerd P, eds), pp. 153–180. New York: Springer-Verlag.

    Google Scholar 

  • Pinaud R, Penner MR, Robertson HA, Currie RW (2001). Upregulation of the immediate early gene arc in the brains of rats exposed to environmental enrichment: implications for molecular plasticity. Brain Res Mol Brain Res 91:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R, Tremere LA, Penner MR, Hess FF, Robertson HA, Currie RW (2002). Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience 112:573–582.

    Article  PubMed  CAS  Google Scholar 

  • Proescholdt MG, Chakravarty S, Foster JA, Foti SB, Briley EM, Herkenham M (2002). Intracere-broventricular but not intraveous interleukin-1β induces widespread vascular-mediated leukocyte infiltration and immune signal mRNA expression followed by brain-wide glial activation. Neuroscience 112:731–749.

    Article  PubMed  CAS  Google Scholar 

  • Radulovic J, Kammermeier J, Spiess J (1998). Relationship between Fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure. J Neurosci 18:7452–7461.

    PubMed  CAS  Google Scholar 

  • Riccio DC, MacArdy EA, Kissinger SC (1991). Associative processes in adaptation to repeated cold exposure in rats. Behav Neurosci 105:599–602.

    Article  PubMed  CAS  Google Scholar 

  • Rivest S, Laflamme N (1995). Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J Neuroendocrinol 7:501–525.

    Article  PubMed  CAS  Google Scholar 

  • Robertson LM, Kerppola TM, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JI, Curran T (1995). Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14:241–252.

    Article  PubMed  CAS  Google Scholar 

  • Rotllant D, Ons S, Carrasco J, Armario A (2002). Evidence that metyrapone can act as a stressor: effect on pituitary-adrenal hormones, plasma glucose and brain c-fos induction. Eur J Neurosci 16:693–700.

    Article  PubMed  Google Scholar 

  • Rubio N, Martin-Clemente B (1999). Theiler’s murine encephalomyelitis virus infection induces early expression of c-fos in astrocytes. Virology 268:21–29.

    Article  Google Scholar 

  • Ryabinin AE, Melia KR, Cole M, Bloom FE, Wilson MC (1995). Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus. J Neurosci 15:721–730.

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Li H-Y, Ericsson A (2000). Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 122:61–78.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SS, Tocco G, Shors TJ, Thompson RF (1991). Activation of immediate early genes after acute stress. NeuroReport 2:17–20.

    PubMed  CAS  Google Scholar 

  • Selye H (1936). A syndrome produced by diverse nocuous agents. Nature 138:32.

    Google Scholar 

  • Senba E, Umemoto S, Kawai Y, Noguchi K (1994). Differential expression of fos famili and jun family mRNAs in the rat hypothalamo-pituitary-adrenal axis after immobilization stress. Mol Brain Res 24:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Sagar SM, Swanson RA (1993). Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit Rev Neurobiol 7:205–228.

    PubMed  CAS  Google Scholar 

  • Shen M, Greenberg ME (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.

    Article  Google Scholar 

  • Staiger JF, Masanneck C, Bisler S, Schleicher A, Zuschratter W, Zilles K (2002). Excitatory and inhibitory neurons express c-Fos in barrel-related columns after exploration of a novel environment. Neuroscience 109:687–699.

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Worley PF (2001). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240.

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Worley P (2002). Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol Learn Memory 78:508–527.

    Article  CAS  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751.

    Article  PubMed  CAS  Google Scholar 

  • Stampt JA, Herbert J (1999). Multiple immediate-early gene expression during physiological and endocrine adaptation to repeated stress. Neuroscience 94:1313–1322.

    Article  Google Scholar 

  • Sullivan GM, Arpegis J, Gorman JM, LeDoux JE (2003). Rodent doxapram model of panic: behavioural effects and c-Fos immunoreactivity in the amygdala. Biol Psychiatry 53:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Swank NW (1994). Coordinate regulation of Fos and Jun proteins in mouse brain by LiCl. NeuroReport 10:3685–3689.

    Article  Google Scholar 

  • Tanimura SM, Sanchez-Watts G, Watts AG (1998). Peptide gene activation, secretion, and steroid feedback during stimulation of rat neuroendocrine corticotropin-releasing hormone neurons. Endocrinology 139:3822–3829.

    Article  PubMed  CAS  Google Scholar 

  • Tchélingérian J-L, Le Saux F, Pouzet B, Jacques C (1997). Widespread neuronal expression of c-Fos throughout the brain and local expression in glia following a hippocampal injury. Neurosci Lett 226:175–178.

    Article  PubMed  Google Scholar 

  • Umegaki H, Zhu W, Nakamura A, Suzuki Y, Takada M, Endo H, Iguchi A (2003). Involvement of the entorhinal cortex in the stress response to immobilization but not to insulin-induced hypoglycaemia. J Neuroendocrinol 15:237–241.

    Article  PubMed  CAS  Google Scholar 

  • Ueyama T, Ohya H, Yoshimura R, Senba E (1999). Effects of ethanol on the stress-induced expression of NGFI-A mRNA in the rat brain. Alcohol 18:171–176.

    Article  PubMed  CAS  Google Scholar 

  • Umemoto S, Kawai Y, Senba E (1994a). Differential regulation of IEGs in the rat PVH in single and repeated stress models. NeuroReport 6:201–204.

    PubMed  CAS  Google Scholar 

  • Umemoto S, Kawai Y, Ueyama T, Senba E (1997). Chronic glucocorticoid administration as well as repeated stress affects the subsequent acute immobilization stress-induced expression of immediate early genes but not that of NGFI-A. Neuroscience 80:763–773.

    Article  PubMed  CAS  Google Scholar 

  • Umemoto S, Noguchi K, Kawai Y, Senba E (1994b). Repeated stress reduces the subsequent stress-induced expression of Fos in rat brain. Neurosci Lett 167:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Vallés A, Martí O, Armario A (2005). Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. J Neurochem 93:1177–1188.

    Article  PubMed  CAS  Google Scholar 

  • Viau V, Sawchenko PE (2002). Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally and phenotypically differentiated manners to acute vs. repeated restraint stress. J Comp Neurol 445:293–307.

    Article  PubMed  Google Scholar 

  • Wang K, Guldenaar SEF, McCabe JT (1997). Fos and Jun expression in rat supraoptic nucleus neurons after acute vs. repeated osmotic stimulation. Brain Res 746:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Stone E, McEwen BS (1994). Induction and habituation of c-fos and zif/268 by acute and repeated stressors. NeuroReport 5:1321–1324.

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchocock D, Evans G, Bliss TV, Hunt SP (1990). Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4:603–614.

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Bhat RV, Baraban JM, Erickson CA, McNaughton BL, Barnes CA (1993). Thresholds for synaptic activation of transcription factors in the hippocampus: correlation with long-term enhancement. J Neurosci 13:4776–4786.

    PubMed  CAS  Google Scholar 

  • Xu Y, Day TA, Buller KM (1999). The central amygdala modulates hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1β administration. Neuroscience 94:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Zangenehpour S, Chaudhuri A (2002). Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps. Mol Brain Res 109:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler DR, Cass WA, Herman JP (1999). Excitatory influence of the locus coeruleus in hypothalamicpituitary-adrenocortical axis response to stress. J Neuroendocrinol 11:361–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Armario, A. (2006). The Contribution of Immediate Early Genes to the Understanding of Brain Processing of Stressors. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_11

Download citation

Publish with us

Policies and ethics