Skip to main content

Plasticity Without a Prior Yield Criterion

  • Chapter
Plasticity and Geotechnics

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 13))

  • 3225 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, J., Horne, M.R. and Heyman, J. (1965). The Steel Skeleton, Vol II. Cambridge University Press.

    Google Scholar 

  • Chandler, H.W. (1985). A plasticity theory without Drucker’s postulate, suitable for granular materials, J. Mech. Phys. Solids., Vol 33, 215–226.

    Article  Google Scholar 

  • Chandler, H.W. (1988). A variational principle for granular materials, Int. J. Num. Analy. Meth. Geomech., Vol 12, 371–378.

    Article  Google Scholar 

  • Chandler, H.W. (1990). A model for the deformation and flow of granular materials undergoing monotonic shear loading, Geotechnique, Vol 40, 379–388.

    Google Scholar 

  • Collins, I.F. and Houlsby, G.T. (1997). Application of thermomechanical principles to the modelling of geotechnical materials, Proc. R. Soc. A., Vol 453, 1975–2001.

    Article  Google Scholar 

  • Collins, I.F. and Kelly, P.A. (2002). A thermomechanical analysis of a family of soil models, Geotechnique, Vol 52, 507–518.

    Article  Google Scholar 

  • Darve, F. and Labanieh, S. (1982). Incremental constitutive law for sands and clays. Int. J. Num. Analy. Meth. Geomech, Vol 6, 243–275.

    Article  Google Scholar 

  • Desrues, J. and Chambon, R. (1993). A new rate type constitutive model for geomaterials: CLoE. In: Modern Approaches to Plasticity, (Editor: D Kolymbas), Elsevier, 309–324.

    Google Scholar 

  • Drucker, D.C. and Prager, W. (1952). Soil mechanics and plastic analysis for limit design, Quart. Appl. Math., Vol 10, 157–165.

    Google Scholar 

  • Dungar, R. and Nuh, S. (1980). Endochronic-critical state models for sand, J. Eng. Mech. Div., ASCE, Vol 106, 951–967.

    Google Scholar 

  • Green, A.E. (1956a). Hypo-elasticity and plasticity, Proc. R. Soc. A., Vol 234, 46–59.

    Google Scholar 

  • Green, A.E. (1956b). Hypo-elasticity and plasticity: II, J. Rat. Mech. Anal., Vol 5, 725–734.

    Google Scholar 

  • Gudehus, G. (1996). A comprehensive constitutive equation for granular material, Soils and Foundations, Vol 36, 1–12.

    Google Scholar 

  • Hill, R (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.

    Google Scholar 

  • Houlsby, G.T. (1981). A Study of Plasticity Theories and Their Applicability to Soils, PhD Thesis, Cambridge University.

    Google Scholar 

  • Houlsby, G.T. (1982). A derivation of the small-strain incremental theory of plasticity from thermodynamics, In: Proc. IUTAM Conf.Deformation and Failure of Granular Materials, Delft, 109–118.

    Google Scholar 

  • Houlsby, G.T. and Puzrin, A.M. (2000). A thermomechanical framework for constitutive models for rate independent dissipative materials, Int. J. Plasticity, Vol 16, 1017–1047.

    Article  Google Scholar 

  • Houlsby, G.T. and Puzrin, A.M. (2006). Principles of Hyperplasticity, Springer, London.

    Google Scholar 

  • Kolymbas, D. (1977). A rate dependent constitutive equation for soils. Mech. Resear: Comm., Vol 4, 367–372.

    Article  Google Scholar 

  • Kolymbas, D. (1991). An outline of hypoplasticity, Arch. Appl. Mech., Vol 61, 143–151.

    Google Scholar 

  • Kolymbas, D. (1994). Hypoplasticity as a constitutive framework for granular materials. In: Computer Methods and Advances in Geomechanics, (Editors: Siriwardane and Zaman), Balkema, 197–208.

    Google Scholar 

  • Kolymbas, D. (Editor) (2000). Constitutive Modelling of Granular Materials, Springer.

    Google Scholar 

  • Martin, J.B. (1975). Plasticity: Fundamentals and General Results, MIT Press, Cambridge.

    Google Scholar 

  • Maugin, G.A. (1992). The Thermomechanics of Plasticity and Fracture, Cambridge University Press.

    Google Scholar 

  • Tamagnini, C., Viggiani, G. and Chambon, R. (2000). A review of two different approaches to hypoplasticity, In: Constitutive Modelling of Granular Materials, (Editor: D Kolymbas), Springer, 107–146.

    Google Scholar 

  • Truesdell, C. (1955). Hypo-elasticity, J. Rat. Mech. Anal., Vol 4, 83–133.

    Google Scholar 

  • Valanis, K.C. (1971). A theory of viscoplasticity without a yield surface, Arch. Mech., Vol 23, 517–534.

    Google Scholar 

  • Valanis, K.C. (1980). Fundamental consequences of a new intrinsic time measure plasticity as a limit of the endochronic theory, Arch. Mech., Vol 32, 171.

    Google Scholar 

  • Valanis, K.C. (1984). Continuum foundations of endochronic plasticity, J. Eng. Muter: Tech., Vol 106, 367.

    Article  Google Scholar 

  • Valanis, K.C. and Read, H.E. (1982). A new endochronic plasticity model for soils, In: Soil Mechanics-Transient and Cyclic Loads, Wiley, 375–417.

    Google Scholar 

  • Watanake, 0. and Atluri, S.N. (1986). Intrenal time, general internal variable, and multiyield surface theories of plasticity and creep: a unification of concepts, Int. J. Plasticity, Vol 2, 37.

    Article  Google Scholar 

  • Wu, W. (1992). Hypoplastizitat als Mathematisches Model1 zum mechanischen Verhalten granularer Stoffe, PhD Thesis, Karlsruhe University, Germany.

    Google Scholar 

  • Wu, W. and Kolymbas, D. (2000). Hypoplasticity then and now, In: Constitutive Modelling of Granular Materials, (Editor: D. Kolymbas), Springer, 57–106.

    Google Scholar 

  • Ziegler, H. (1977). An Introduction to Thermodynamics, North Holland, Amsterdam.

    Google Scholar 

  • Ziegler, H. and Wehrli, C. (1987). The derivation of constitutive relations from the free energy and the dissipation function, Adv. Appl. Mech., Vol 25, 183–238.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Plasticity Without a Prior Yield Criterion. In: Plasticity and Geotechnics. Advances in Mechanics and Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33599-5_9

Download citation

Publish with us

Policies and ethics