Skip to main content

Finite Element Analysis

  • Chapter
  • 3258 Accesses

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 13))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbo, A.J. (1997). Finite Element Algorithms for Elastoplasticity and Consolidation, PhD Thesis, University of Newcastle, NSW.

    Google Scholar 

  • Abbo, A.J. and Sloan, S.W. (1996). An automatic load stepping algorithm with error control. Int. J. Num. Meth. Eng., Vol. 39, 1737–1759.

    Article  Google Scholar 

  • Bathe, K.J. (1982). Finite Element Procedures in Engineering Analysis, Prentice Hall.

    Google Scholar 

  • Britto, A.M. and Gunn, M.J. (1987). Critical State Soil Mechanics via Finite Elements, Ellis Horwood, Chichester.

    Google Scholar 

  • Burd, H.J. (1986). A Large Displacement Finite Element Analysis of a Reinforced Unpaved Road, DPhil Thesis, University of Oxford, UK.

    Google Scholar 

  • Burd, H.J. and Houlsby, G.T. (1990). Finite element analysis of two cylindrical expansion problems involving near incompressible material behaviour. Int. J. Num. Analy. Meth. Geomech., Vol. 14, 351–366.

    Article  Google Scholar 

  • Carter, J.P., Booker, J.R. and Davis, E.H. (1977). Finite deformation of an elasto-plastic soil. Int. J. Num. Analy. Meth. Geomech., Vol. 1, 2543.

    Google Scholar 

  • Carter, J.P., Desai, C.S., Potts, D.M., Schweiger, H.F. and Sloan, S.W. (2000). Computing and computer modelling in geotechnical engineering, Proc. of GeoEng2000, Vol I, 1157–1252.

    Google Scholar 

  • Chen, W.F. and Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics. Elsevier, Amsterdam.

    Google Scholar 

  • Christian, J.T. (1968). Undrained stress distribution by numerical methods. J. Soil Mech. Found. Div., ASCE, Vol. 96, 1289–1310.

    Google Scholar 

  • Crisfield, M.A. (1991). Non-linear Finite Element Analysis of solids and Structures, Vol I, John Wiley and Sons, Chichester.

    Google Scholar 

  • Crisfield, M.A. (1997). Non-linear Finite Element Analysis of solids and Structures, Vol II, John Wiley and Sons, Chichester.

    Google Scholar 

  • de Borst, R. and Vermeer, P.A. (1984). Possibilities and limitations of finite elements for limit analysis, Geotechnique, Vol. 34, 199–210.

    Article  Google Scholar 

  • Dienes, J.K. (1979). On the analysis of rotation and stress rate in deforming bodies, Acta Mechanica, Vol. 32, 217–232.

    Article  Google Scholar 

  • Herrmann, L.R. (1965). Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. J. Am. Inst. Aeronautics and Astronautics, Vol. 3, 1896–1900.

    Google Scholar 

  • Hibbitt, H.D., Marcal, P.V. and Rice, J.R. (1970). A finite element formulation for problems of large strain and large displacement. Int. J. Solids and Strctures, Vol. 6, 1069–1086.

    Article  Google Scholar 

  • Hill, R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.

    Google Scholar 

  • Hill, R. (1968). On constitutive inequalities for simple materials. J. Mech. Phys. Solids, Vol 16, 229–242.

    Article  Google Scholar 

  • Jaumann, G. (1911). Sitzungsberichte akad. Wiss. Wien., Vol 120, 385.

    Google Scholar 

  • Jinka, A.G.K. and Lewis, R.W. (1994). Incompressibility and axisymmetry: a modified mixed and penalty formulation. Int. J. Num. Meth. Eng., Vol. 37, 1623–1649.

    Article  Google Scholar 

  • Khong, C.D. (2004). Development and Numerical Evaluation of Unzjied Critical State Models, PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Khong, C.D. and Yu, H.S. (2002). Computational aspects of a unified critical state model for clay and sand, Proc. of 8th NUMOG, Rome, 271–277.

    Google Scholar 

  • Laursen, M.E. and Gellert, M. (1978). Some criteria for numerically integrated matrices and quadrature formulas for triangles. Int. J. Num. Meth. Eng., Vol. 12, 167–176.

    Article  Google Scholar 

  • Malkus, D.S. and Hughes, T.J.R. (1978). Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comp. Methods Appl. Mech. Eng., Vol. 15, 63–81.

    Article  Google Scholar 

  • Malvern, L.E. (1969). Introduction to the Mechanics of a Continuous Medium. Prentice Hall, New Jersey.

    Google Scholar 

  • McMeeking, R.M. and Rice, J.R. (1975). Finite element formulations for problems of large elastic-plastic deformation. Int. J. Solids and Structures, Vol. 11, 601–616.

    Article  Google Scholar 

  • Naylor, D.J. (1974). Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures. Int. J. Nurn. Meth. Eng., Vol 8, 443–460.

    Article  Google Scholar 

  • Naylor, D.J. (1994). On integrating rules for triangles, Numerical Methods in Geotechnical Engineering, Smith (ed.), Balkema, 111–114.

    Google Scholar 

  • Naylor, D.J., Pande, G.N., Simpson, B. and Tabb, R. (1981). Finite Elements in Geotechnical Engineering, Pineridge Press, Swansea.

    Google Scholar 

  • Nagtegaal, J.C., Parks, D.M. and Rice, J.R. (1974). On numerically accurate finite element solutions in the fully plastic range. Comp. Methods Appl. Mech. Eng., Vol. 4, 153–177.

    Article  Google Scholar 

  • Oldroyd, J.G. (1950). On the formulation of rheological equations of state. Proc. R. Soc. A, Vol 200, 523–541.

    Google Scholar 

  • Potts, D. M. and Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford, London.

    Google Scholar 

  • Prager, W. (1961). An elementary discussion of definitions of stress rate. Quart. Appl. Math., Vol. 18, 403–407.

    Google Scholar 

  • Simo, J.C. and Hughes, T.J.R. (1998). Computational Inelasticity, Springer.

    Google Scholar 

  • Sloan, S.W. (1981). Numerical Analysis of Incompressible and Plastic Solids Using Finite Elements. PhD Thesis, University of Cambridge.

    Google Scholar 

  • Sloan, S.W. (1987). Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Num. Meth. Eng., Vol 24, 893–912.

    Article  Google Scholar 

  • Sloan, S.W. and Randolph, M.F. (1982). Numerical prediction of collapse loads using finite element methods. Int. J. Nurn. Analy. Meth. Geomech., Vol. 6, 47–76.

    Article  Google Scholar 

  • Sloan, S.W. and Randolph, M.F. (1983). Discussion on ‘Elasto-plastic analysis of deep foundations in cohesive soils’ by D.V. Griffiths. Int. J. Num. Analy. Meth. Geomech., Vol. 7, 385–393.

    Article  Google Scholar 

  • Tan, S.M. (2006). Constitutive and Numerical Modelling of Bonded Geomaterials, Forthcoming PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Teh, C.I. (1987). An Analytical Study of the Cone Penetration, DPhil Thesis, University of Oxford, UK.

    Google Scholar 

  • Truesdell, C. (1953). The mechanical foundations of elasticity and fluid dynamics. J. Rat. Mech. Analys., Vol. 2, 593–616.

    Google Scholar 

  • Walker, J. and Yu, H.S. (2006). Adaptive finite element analysis of cone penetration in clay. Acta Geotechnica, Vol. 1 (in press).

    Google Scholar 

  • Xu, G.Q. (2006). Wellbore Stability in Geomechanics, Forthcoming PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Yang, Y. and Yu, H.S. (2006a). Numerical simulations of simple shear with non-coaxial soil models, Int. J. Num. Analy. Meth. Geomech, Vol 30, 1–19.

    Article  Google Scholar 

  • Yang, Y. and Yu, H.S. (2006b). A non-coaxial critical state soil model and its application to simple shear simulations, Int. J. Num. Analy. Meth. Geomech. (in press).

    Google Scholar 

  • Yu, H.S. (1990). Cavity Expansion Theory and its Application to the Analysis of Pressurerneters. DPhil. Thesis, University of Oxford.

    Google Scholar 

  • Yu, H.S. (1991). A rational displacement interpolation function for axisymmetric finite element analysis of incompressible materials. Finite Elements in Analysis and Design, Vol. 10, 205–219.

    Article  Google Scholar 

  • Yu, H.S. (1994). State parameter from self-boring pressuremeter tests in sand. J. Geotech. Eng., ASCE, Vol. 120, 2118–2135.

    Article  Google Scholar 

  • Yu, H.S. (1995). A unified critical state model for clay and sand. Civil Engineering Research Report No 112.08.1995, University of Newcastle, NSW.

    Google Scholar 

  • Yu, H.S. (1998). CASM: A unified state parameter model for clay and sand. Int. J. Num. Analy. Meth. Geomech., Vol 22, 621–653.

    Article  Google Scholar 

  • Yu, H.S. (2004). In situ soil testing: from mechanics to interpretation-First J.K. Mitchell Lecture, Proc. 2nd International Conference on Site Characterisation (ISC2), Porto, Vol. 1, 3–38.

    Google Scholar 

  • Yu, H.S. and Khong, C.D. (2002). Application of a unified critical state model in finite element analysis, Proc. 3rd Conf. on 30 Finite Elements for Pavement Analysis Design and Research, Amsterdam, 253–267.

    Google Scholar 

  • Yu, H.S. and Netherton, M.D. (2000). Performance of displacement finite elements for modelling incompressible materials. Int. J. Num. Analy. Meth. Geomech., Vol. 24, 627–653.

    Article  Google Scholar 

  • Yu, H.S. and Yuan, X. (2005). The importance of accounting for non-coaxial behaviour in modelling soil-structure interaction, Proc. 11th Int Conf. of IACMAG, (Editors: G Barla and M. Barla), Patron Editore, Invited Issue Paper, Vol 4, 709–718.

    Google Scholar 

  • Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soils, Proc. R. Soc. A., Vol 462, 725–748.

    Article  Google Scholar 

  • Yu, H.S., Charles, M.T. and Khong, C.D. (2005). Analysis of pressuremeter geometry effects in clay using critical state models. Int. J. Num. Analy. Meth. Geomech., Vol. 29, 845–659.

    Article  Google Scholar 

  • Yu, H.S., Houlsby, G.T. and Burd, H.J. (1993). A novel isoparametric finite element displacement formulation for axisymmetric analysis of nearly incompressible materials. Int. J. Num. Meth. Eng., Vol. 36, 2453–2472.

    Article  Google Scholar 

  • Yu, H.S., Yang, Y. and Yuan, X. (2005). Application of non-coaxial plasticity models in geotechnical analysis. Proc. of 16th Int. Conf. of ISSMGE., Osaka, Vol. 2, 993–996.

    Google Scholar 

  • Yuan, X. (2005). Non-Coaxial Plasticity for Granular Soils, PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L. and Too, T.M. (1971). Reduced integration technique in general analysis of plates and shells. Int. J. Num. Meth. Eng., Vol. 3, 275–290.

    Article  Google Scholar 

  • Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1998). Computational Geornechanics, Wiley.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Finite Element Analysis. In: Plasticity and Geotechnics. Advances in Mechanics and Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33599-5_14

Download citation

Publish with us

Policies and ethics