Skip to main content

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 13))

  • 3432 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, E.T. (1987). Analytical and Computational Methods in Engineering Rock Mechanics, “Expanded version of the lectures given at the John Bray Colloquium”, Allen & Unwin, London.

    Google Scholar 

  • Burland, J.B. (1989). Small is beautiful: the stiffness of soils at small strains, Can. Geotech. J., Vol 26, 499–516.

    Article  Google Scholar 

  • Carter, J.P., Desai, C.S., Potts, D.M., Schweiger, H.F. and Sloan, S.W. (2000). Computing and computer modelling in geotechnical engineering, Proc. of GeoEng2000, Vol I, 1157–1252.

    Google Scholar 

  • Chandler, H.W. (1985). A plasticity theory without Drucker’s postulate, suitable for granular materials, J. Mech. Phys. Solids, Vol 33, 215–226.

    Article  Google Scholar 

  • Chen, W.F. (1975). Limit Analysis and Soil Plasticity, Elsevier, Amsterdam.

    Google Scholar 

  • Chen, W.F. and Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics. Elsevier, Amsterdam.

    Google Scholar 

  • Collins, I.F. and Houlsby, G.T. (1997). Application of thermomechanical principles to the modelling of geotechnical materials, Proc. R. Soc. A., Vol 453, 1975–2001.

    Article  Google Scholar 

  • Cundall, P.A. (2000). A discontinuous future for numerical modelling in geomechanics, Proc. ICE: Geotech. Eng., Vol 149, 41–47.

    Article  Google Scholar 

  • Cundall, P.A. and Strack, O.D.L. (1979). A discrete numerical model for granular assemblies, Geotechnique., Vol 29, 47–65.

    Google Scholar 

  • Dafalias, Y.F. and Popov, E.P. (1975). A model of nonlinearly hardening materials for complex loadings, Acta Mech., Vol 21, 173–192.

    Article  Google Scholar 

  • Davis, E.H. (1968). Theories of plasticity and the failure of soil masses, In: Soil Mechanics: Selected Topics, (Editor: I. K. Lee), Butterworths, London, 341–380.

    Google Scholar 

  • Davis, R.O. and Selvadurai, A.P.S. (1996). Elasticity and Geomechanics, Cambridge University Press.

    Google Scholar 

  • de Josselin de Jong, G. (1971). The double sliding, free rotating model for granular assemblies, Geotechnique., Vol 21, 155–162.

    Google Scholar 

  • de Saint-Venant, B (1870). Memoire sur l’etablissement des equations differentielles des mouvements interieurs operes dans les corps solides ductiles au dela des limites ou I’elasticite pourrait les ramener a leur premier etat, C.R. Acas. Sci. (Paris), Vol 70, 473–480.

    Google Scholar 

  • Drucker, D.C. (1950). Stress-strain relations in the plastic range: a survey of the theory and experiment, Report for OfJice of Naval Research Contract N7-onr-358, December, Brown University.

    Google Scholar 

  • Drucker, D.C. (1952). A more fundamental approach to plastic stress-strain relations, In: Proc. 1st US Nat. Congl: Appl. Mech., ASME, New York, 487–491.

    Google Scholar 

  • Drucker, D.C. (1958). The definition of a stable inelastic material,J. Appl. Mech., ASME, Vol 26, 101–106.

    Google Scholar 

  • Drucker, D.C., Gibson, R.E. and Henkel, D.J. (1957). Soil mechanics and working hardening theories of plasticity, Trans. ASCE, Vol 122, 338–346.

    Google Scholar 

  • Einav, I. (2004). Thermomechnical relations between stress space and strain space models, Geotechnique, Vol 54, 315–318.

    Google Scholar 

  • Gens, A. and Potts, D.M. (1988). Critical state models in computational geomechanics. Eng. Comput., Vol 5, 178–197.

    Google Scholar 

  • Green, A.E. (1956). Hypo-elasticity and plasticity, Proc. R. Soc. A., Vol 234, 46–59.

    Google Scholar 

  • Harris, D. (1995). A unified formulation for plasticity models of granular and other materials, Proc. R. Soc. A., Vol 450, 37–49.

    Article  Google Scholar 

  • Hill, R. (1948). A variational principle of maximum plastic work in classical plasticity, Q.J. Mech. Appl. Math., Vol 1, 18–28.

    Article  Google Scholar 

  • Hill, R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.

    Google Scholar 

  • Houlsby, G.T. (1982). A derivation of the small-strain incremental theory of plasticity from thermodynamics, Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft, 109–118.

    Google Scholar 

  • Iwan, W.D. (1967). On a class of models for the yielding behaviour of continuous and composite systems, J. Appl. Mech., Vol 34, 612–617.

    Google Scholar 

  • Jamiolkowski, M., Ladd, C.C., Germaine, J.T. and Lancellotta, R. (1985). New developments in field and laboratory testing of soils, Theme Lecture, Proc. 11th Int. Conf. on Soil Mech. Found. Eng., San Francisco, Vol l, 57–153, Balkema.

    Google Scholar 

  • Jiang, M.J., Harris, D. and Yu, H.S. (2005). Kinematic models for non-coaxial granular materials: Part I and Part II, Int. J. Num. Anal. Meth. Geomech., Vol 29, 643–689.

    Article  Google Scholar 

  • Jiang, M.J. and Yu, H.S. (2006). Application of the discrete element method to modern geomechanics, In: Modern Trends in Geomechanics, (Editors: W. Wu and H.S. Yu), Springer.

    Google Scholar 

  • Koiter, W.T. (1960). General theorems for elastic-plastic solids, In: Progress in Solid Mechanics, (Editors: I.N. Sneddon and R. Hill), Vol 1, 167–221.

    Google Scholar 

  • Kolymbas, D. (1991). An outline of hypoplasticity, Arch. Appl. Mech., Vol 61, 143–151.

    Google Scholar 

  • Krieg, R.D. (1975). A practical two-surface plasticity theory, J. Appl. Mech., Vol 42, 641–646.

    Google Scholar 

  • Maugin, G.A. (1992). The Thermomechanics of Plasticity and Fracture, Cambridge University Press.

    Google Scholar 

  • McDowell, G.R. and Bolton, M.D. (1998). On the micromechanics of crushable aggregates, Geotechnique, Vol 48, 667–679.

    Google Scholar 

  • McDowell, G.R. and Harireche, 0. (2002). Discrete elment modelling of yielding and nomral compression of sand, Geotechnique, Vol 52, 299–304.

    Article  Google Scholar 

  • Melan, E (1938). Zur plastizitat des raumlichen Kontinuums, Ing. Arch., Vol 9, 116–125.

    Article  Google Scholar 

  • Mitchell, J.K. (1993). Fundamentals of Soil Behaviour, 2nd edition, John Wiley & Sons, New York.

    Google Scholar 

  • Mroz, Z (1967). On the description of anisotropic hardening, J. Mech. Phys. Solids., Vol 15, 163–175.

    Article  Google Scholar 

  • Nadai, A. (1950). Theory of Flow and Fracture of Solids, 2nd Edition, McGraw-Hill, New York.

    Google Scholar 

  • Naylor, D.J., Pande, G.N., Simpson, B. and Tabb, R. (1981). Finite Elements in Geotechnical Engineering, Pineridge Press, Swansea.

    Google Scholar 

  • Naghdi, P.M. (1960). Stress-strain relations in plasticity and thermoplasticity, In: Plasticity, (Editors: E.H. Lee and P.S. Symonds), Pergamon Press, 121–169.

    Google Scholar 

  • Naghdi, P.M. and Trapp, J.A. (1975). The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int. J. Eng. Sci., Vol 13, 785–797.

    Article  Google Scholar 

  • Prager, W. (1955). The theory of plasticity-a survey of recent achievements, Proc. Inst. Mech. Eng., London, 3–19.

    Google Scholar 

  • Potts, D. M. and Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford, London.

    Google Scholar 

  • Poulos, H.G. and Davis, E.H. (1974). Elastic Solutions for Soil and Rock Mechanics, John Wiley, New York.

    Google Scholar 

  • Roscoe, K.H. and Burland, J.B. (1968). On generalised stress strain behaviour of wet clay. In: Engineering Plasticity (edited by Heyman and Leckie), 535–609.

    Google Scholar 

  • Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958). On yielding of soils, Geotechnique., Vol 8, 28.

    Google Scholar 

  • Rothenburg, L. and Bathurst, R.J. (1992). Micromechanical features of granular assemblies with planar elliptical particles, Geotechnique, Vol 42, 79–95.

    Article  Google Scholar 

  • Rudnicki, J.W. and Rice, J.R. (1975). Conditions for the localisation of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids., Vol 23, 371–394.

    Article  Google Scholar 

  • Salencon, J. (1977). Applications of the Theory of Plasticity in Soil Mechanics, Wiley, Chichester.

    Google Scholar 

  • Schofield, A.N. and Wroth, C.P. (1968). Critical State Soil Mechanics, McGraw-Hill, London.

    Google Scholar 

  • Simpson, B. (1992). Retaining structure: displacement and design, Geotechnique, Vol 42, 539–576.

    Google Scholar 

  • Sloan, S.W. and Randolph, M.F. (1982). Numerical prediction of collapse loads using finite element methods. Int. J. Num. Analy. Meth. Geomech., Vol 6, 47–76.

    Article  Google Scholar 

  • Sokolovskii, V.V. (1965). Statics of Granular Media, Pergamon, Oxford.

    Google Scholar 

  • Spencer, A.J.M. (1964). A theory of the kinematics of ideal soils under plane strain conditions, J. Mech. Phys. Solids., Vol 12, 337–351.

    Article  Google Scholar 

  • Spencer, A.J.M. (1980). Continuum Mechanics. Dover Publications, New York.

    Google Scholar 

  • Terzaghi, K. (1943). Theoretical Soil Mechanics, Wiley, New York.

    Google Scholar 

  • Thornton, C. (2000). Microscopic approach contributions to constitutive modelling, In: Constitutive Modelling of Granular Materials, (Editor: D. Kolymbas), Springer 193–208.

    Google Scholar 

  • Valanis, K.C. (1971). A theory of viscoplasticity without a yield surface, Arch. Mech., Vol 23, 517–534.

    Google Scholar 

  • von Mises, R (1928). Mechanik der plastischen Formaenderung von Kristallen, Z. angew. Math. Mech., Vol 8, 161–185.

    Google Scholar 

  • Wroth, C.P. and Houlsby, G.T. (1985). Soil mechanics-property characterisation and analysis procedures, Proc. 11th Int Conf of ISSMFE, Theme Lecture, Vol l, 1–55.

    Google Scholar 

  • Yang, Y. and Yu, H.S. (2006a). Numerical simulations of simple shear with non-coaxial soil models, Int. J. Num. Analy. Meth. Geomech., Vol 30, 1–19.

    Article  Google Scholar 

  • Yang, Y. and Yu, PH.S. (2006b). A non-coaxial critical state soil model and its application to simple shear simulations, Int. J. Num. Analy. Meth. Geomech. (in press).

    Google Scholar 

  • Yoder, P.J. and Iwan, W.D. (1981). On the formulation of strain-space plasticity with multiple loading surfaces. J. Appl. Mech., Vol 48, 773–778.

    Article  Google Scholar 

  • Yu, H.S. (1998). CASM: A unified state parameter model for clay and sand. Int. J. Num. Analy. Meth. Geomech., Vol 22, 621–653.

    Article  Google Scholar 

  • Yu, H.S. (2000a). Cavity Expansion Methods in Geomechanics, Kluwer Academic Publishers.

    Google Scholar 

  • Yu, H.S. (2000b). Theoretical Methods in Geomechanics, DSc Thesis, University of Newcastle, Australia.

    Google Scholar 

  • Yu, H.S. and Yuan, X. (2005). The importance of accounting for non-coaxial behaviour in modelling soil-structure interaction, Proc. 11th Int Con$ of ZACMAG, (Editors: G Barla and M. Barla), Patron Editore, Invited Issue Paper, Vol 4, 709–718.

    Google Scholar 

  • Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soils, Proc. R. Soc. A., Vol 462, 725–748.

    Article  Google Scholar 

  • Zheng, Y., Chu, J. and Xu, Z. (1986). Strain space formulation of the elasto-plastic theory and its finite element implementation. Comput. Geotech. Vol 2, 373–388.

    Article  Google Scholar 

  • Ziegler, H. (1959). A modification of Prager’s hardening rule. Quart. Appl. Math. Vol 17, 55.

    Google Scholar 

  • Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1998). Computational Geomechanics, Wiley.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Introduction. In: Plasticity and Geotechnics. Advances in Mechanics and Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33599-5_1

Download citation

Publish with us

Policies and ethics