Skip to main content

A Step Deep on Hyperthermia, Hypoxia and Chemotherapy Interactions

  • Chapter
Hyperthermia in Cancer Treatment: A Primer

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 852 Accesses

Abstract

Cancer physiology can be a new significant target for therapy. Nonsurgical approaches to cancer treatment, primarily radiation therapy and chemotherapy, are almost exclusively based on agents that kill cells. The main problem with these current treatments, however, is that they do not have specificity for cancer cells. In the case of antineoplastic drugs, it is primarily the rapid proliferation of many of the cancer cells that makes them more sensitive to cell killing than their normal cellular counterparts, for radiation therapy, a degree of specificity is achieved by localizing the radiation to the tumour and its immediate surrounding normal tissue. However, both treatments are limited by their toxic effects on normal cells. To achieve greater efficacy many researchers are attempting to stress differences between normal and malignant cells at the cellular milieu and biomolecular properties. The physiology of solid tumours at the microenvironmental level is sufficiently different from that of the normal tissues from which they arise to provide a unique and selective target for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray LH, Conger AD, Ebert M et al. Concentration of oxygen dissolved in tissue at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26:638–48.

    PubMed  CAS  Google Scholar 

  2. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955; 9:539–49.

    PubMed  CAS  Google Scholar 

  3. Moulder JE, Rockwell S. Tumor hypoxia: Its impact on cancer therapy. Cancer Metastasis Rev 1987; 5:313–41.

    Article  PubMed  CAS  Google Scholar 

  4. Brown JM. The hypoxic cell: A target for selective cancer therapy. Cancer Res 1999; 59:5863–70.

    PubMed  CAS  Google Scholar 

  5. Rauth AM, Melo T, Misra V. Bioreductive therapies: An overview of drugs and their mechanis m of action. Int J Radiat Oncol Biol Phys 1998; 42:755–62.

    PubMed  CAS  Google Scholar 

  6. Wouters BG, Wang LH, Brown JM. Tirapazamine: A new drug producing tumor specific enhancement of platinum-based chemotherapy in non small cell lung cancer. Ann Oncol 1999; 10(suppl 5):S29–S33.

    Article  PubMed  Google Scholar 

  7. Graeber TG, Osmanian C, Jacks T. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  8. Lin A, Cosby L, Shansky C et al. Potential bioreductive alkylating agents. 1. Benzoquinone derivates. J Med Chem 1972; 15:1247–52.

    Article  PubMed  CAS  Google Scholar 

  9. Adams GE, Stratford IJ. Bioreductive drugs for cancer therapy: The search for tumour specificity. Int J Radiat Oncol Biol Phys 1994; 29:231–8.

    PubMed  CAS  Google Scholar 

  10. Teicher BA, Holden SA, Al-Achi A et al. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulation in vivo in the FSallC murine fibrosarcoma. Cancer Res 1990; 50:3339–44.

    PubMed  CAS  Google Scholar 

  11. Binley L, Iqball S, Kingsman S et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 1999; 6:1721–7.

    Article  PubMed  CAS  Google Scholar 

  12. Zaffaroni N, Fiorentini G, De Giorgi U. Hyperthermia and hypoxia: New developments in anti-cancer chemotherapy. Eur J Surg Oncol 2001; 27:340–2.

    Article  PubMed  CAS  Google Scholar 

  13. Guadagni S, Fiorentini G, Palumbo G et al. Hypoxic pelvic perfusion with mitomycin C using a simplified ballon-occlusion technique in the treatment of patients with unresectable locally recurrent rectal cancer. Arch Surg 2001; 136(1):105–12.

    Article  PubMed  CAS  Google Scholar 

  14. Guadagni S, Russo F, Rossi CR et al. Deliberate hypoxic pelvic and limb chemoperfusion in the treatment of recurrent melanoma. Am J Sur 2002; 183:28–36.

    Article  Google Scholar 

  15. Fiorentini G, Poddie D, Graziani G et al. Hypoxic isolated limb perfusion with mitomycin C in locally recurrent melanoma and sarcoma: Results of a phase II study. Reg Cancer Treat 1995; 8:135–9.

    Google Scholar 

  16. Brown JM, Giacca AJ. The unique physiology of solid tumore: Opportunities (and problems) for cancer therapy. Cancer Res 1998; 58:1408–16.

    PubMed  CAS  Google Scholar 

  17. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperther 1999; 2:79–107.

    Article  Google Scholar 

  18. Zaffaroni N, Villa R, Daidone MG et al. Antitumor activity of hyperthermia alone or in combination with cisplatin and melphalan in primary cultures of human malignant melanoma. Int J Cell Cloning 1989; 7:385–94.

    Article  PubMed  CAS  Google Scholar 

  19. Kusumoto T, Holden SA, Ara G et al. Hyperthermia and platinum complexes: Time between treatments and synergy in vitro and in vivo. Int J Hyperther 1995; 11:575–86.

    Article  CAS  Google Scholar 

  20. Bates DA, Mackillop WJ. Effect of hyperthermia on the uptake and cytotoxicity of melphalan in Chinese hamster ovary cells. Int J Radiat Onco/Biol Phys 1998; 16:187–91.

    Google Scholar 

  21. Zaffaroni N, Villa R, Orlandi L et al. Effect of hyperthrmia on the formation and removal of DNA interstrand cross-links induced by melphalan in primary cultures of human malignant melanoma. Int J Hyperther 1992; 8:341–9.

    Article  CAS  Google Scholar 

  22. Orlandi L, Zaffaroni N, Bearzatto A et al. Effect of melphalan and hyperthermia on cell cycle progression and cyclin Bl expression in human melanoma cells. Cell Prolif 1995; 28:617–30.

    Article  PubMed  CAS  Google Scholar 

  23. Orlandi L, Zaffaroni N, Bearzatto A et al. Effect of melphalan and hyperthermia on p34cdc2 kinase activity in human melanoma cells. Br J Cancer 1996; 74:1924–8.

    PubMed  CAS  Google Scholar 

  24. Rietbroek RC, van de Vaart PJ, Haveman J et al. Hyperthermia enhances the cytotoxic activity and platinum-DNA adduct formation of lobaplatin and oxaliplatin in cultured SW 1573 cells. J Cancer Res Clin Oncol 1997; 123:6–12.

    Article  PubMed  CAS  Google Scholar 

  25. Orlandi L, Costa A, Zaffaroni N et al. Relevance of cell kinetic and ploidy characteristics for the thermal response of malignant melanoma primary cultures. Int J Oncol 1993; 2:523–6.

    Google Scholar 

  26. Richards EH, Hickman JA, Masters JR. Heat shock protein expression in testis and bladder cancer celi lines exhibiting differential sensitivity to heat. Br J Cancer 1995; 72:620–6.

    PubMed  CAS  Google Scholar 

  27. Takemoto M, Kuroda M, Urano M et al. Effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours. Int J Hyperthermia 2003; 19(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  28. Urano M, Ling CC. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia 2002; 18(4):307–15.

    Article  PubMed  CAS  Google Scholar 

  29. Mohamed F, Stuart OA, Glehen O et al. Docetaxel and hyperthermia: Factors that modify thermal enhancement. J Surg Oncol 2004; 88(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  30. Li GC, He F, Shao X et al. Adenovirus-mediated heat-activated antisense Ku70 expression radiosensitizes tumor cells in vitro and in vivo. Cancer Res 2003; 63(12):3268–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Fiorentini, G., De Giorgi, U., Cantore, M., Mambrini, A., Guadagni, S. (2006). A Step Deep on Hyperthermia, Hypoxia and Chemotherapy Interactions. In: Hyperthermia in Cancer Treatment: A Primer. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33441-7_11

Download citation

Publish with us

Policies and ethics