Skip to main content

Molecular Genetic Testing for Metabolic Disorders

  • Chapter

Abstract

Inborn errors of metabolism represent a highly diverse group of genetic disorders. Individually the disorders are rare. The most prevalent, phenylketonuria (PKU), affects approximately 1 in 10,000 individuals. However, because numerous metabolic disorders exist, collectively they are estimated to affect as many as 1 in 600 individuals. The clinical consequences of such disorders are broad and can be severe, with progressive neurological impairment, mental retardation (MR), organomegaly, and high morbidity. Their mode of inheritance is usually autosomal recessive but also can be Xlinked. Metabolic disorders result from defects in the individual enzymes of pathways that govern many different aspects of metabolism in distinct compartments within the cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowacki PM, Byck S, Prevost L, Scriver CR. PAH mutation analysis consortium database: 1997. Prototype for relational locus-specific mutation databases. Nucleic Acids Res. 1998;26:220–225.

    Article  PubMed  CAS  Google Scholar 

  2. Erlandsen H, Stevens RC. The structural basis of phenylketonuria. Mol Genet Metab. 1999;68:103–125.

    Article  PubMed  CAS  Google Scholar 

  3. Yang Y, Drummond-Borg M, Garcia-Heras J. Molecular analysis of phenylketonuria (PKU) in newborns from Texas. Hum Mut. 2001;17:523.

    Article  PubMed  CAS  Google Scholar 

  4. Xiao W, Oefner PJ. Denaturing high-performance liquid chromatography: a review. Hum Mut. 2001;17:439–474.

    Article  PubMed  CAS  Google Scholar 

  5. Brusilow SW, Horwich AL. Urea cycle enzymes. In: Scriver R, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:1909–1963.

    Google Scholar 

  6. Tuchman M, Jaleel N, Morizono H, Sheehy L, Lynch MG. Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mut. 2002;19:93–107.

    Article  PubMed  CAS  Google Scholar 

  7. Tuchman M, McCullough BA, Yudkoff M. The molecular basis of ornithine transcarbamylase deficiency. Eur J Pediatr. 2000;159(suppl 3):S196–S198.

    Article  PubMed  CAS  Google Scholar 

  8. McCullough BA, Yudkoff M, Batshaw ML, Wilson JM, Raper SE, Tuchman M. Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype. Am J Med Genet. 2000;93:313–319.

    Article  PubMed  CAS  Google Scholar 

  9. Wenger DA, Coppola S, Liu SL. Lysosomal storage disorders: diagnostic dilemmas and prospects for therapy. Genet Med. 2002;4:412–419.

    PubMed  CAS  Google Scholar 

  10. Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K, Suzuki Y. The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:3827–3877.

    Google Scholar 

  11. Sutton VR. Tay-Sachs disease screening and counseling families at risk for metabolic disease. Obstet Gynecol Clin North Am. 2002;29:287–296.

    Article  PubMed  Google Scholar 

  12. Grabowski GA. Gaucher disease: gene frequencies and genotype/ phenotype correlations. Genet Test. 1997;1:5–12.

    PubMed  CAS  Google Scholar 

  13. Beutler E, Grabowski GA. Gaucher disease. In: Scriver R, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:3635–3668.

    Google Scholar 

  14. Koprivica V, Stone DL, Park JK, et al. Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet. 2000;66:1777–1786.

    Article  PubMed  CAS  Google Scholar 

  15. Holton JB, Walter JH, Tyfield LA. Galactosemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:1553–1587.

    Google Scholar 

  16. Tyfield L, Reichardt J, Fridovich-Keil J, et al. Classical galactosemia and mutations at the galactose-1-phosphate uridyl transferase (GALT) gene. Hum Mut. 1999;13:417–430.

    Article  PubMed  CAS  Google Scholar 

  17. Elsas LJ, Langley S, Steele E, et al. Galactosemia: a strategy to identify new biochemical phenotypes and molecular genotypes. Am J Hum Genet. 1995;56:630–639.

    PubMed  CAS  Google Scholar 

  18. Elsas LJ, Lai K. The molecular biology of galactosemia. Genet Med. 1998;1:40–48.

    Article  PubMed  CAS  Google Scholar 

  19. Yang Y-P, Corley N, Garcia-Heras J. Molecular analysis in newborns from Texas affected with galactosemia. Hum Mut. 2002;19:82–83.

    Article  PubMed  CAS  Google Scholar 

  20. Chen Y-T. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:1521–1551.

    Google Scholar 

  21. Hirschhorn R, Reuser AJJ. Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:3389–3420.

    Google Scholar 

  22. Roe CR, Ding J. Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:2297–2326.

    Google Scholar 

  23. Chace DH, Kalas TA, Naylor EW. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet. 2002;3:17–45.

    Article  PubMed  CAS  Google Scholar 

  24. Gregersen N, Andresen BS, Corydon MJ, et al. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotypephenotype relationship. Hum Mut. 2001;18:169–189.

    Article  PubMed  CAS  Google Scholar 

  25. Sacksteder KA, Gould SJ. The genetics of peroxisome biogenesis. Annu Rev Genet. 2000;34:623–652.

    Article  PubMed  CAS  Google Scholar 

  26. Moser HW, Smith KD, Watkins PA, Powers J, Moser AB. X-linked adrenoleukodystrophy. In: In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:3257–3302.

    Google Scholar 

  27. Moser HW, Loes DJ, Melhem ER, et al. X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality: a study involving 372 patients. Neuropediatrics. 2000;31:227–239.

    Article  PubMed  CAS  Google Scholar 

  28. Boehm CD, Cutting GR, Lachtermacher MB, Moser HW, Chong SS. Accurate DNA-based diagnostic and carrier testing for X-linked adrenoleukodystrophy. Mol Genet Metab. 1999;66:128–136.

    Article  PubMed  CAS  Google Scholar 

  29. Kemp S, Pujol A, Waterham HR, et al. ABCD1 mutations and the Xlinked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mut. 2001;18:499–515.

    Article  PubMed  CAS  Google Scholar 

  30. Matalon R, Michals-Matalon K. Recent advances in Canavan disease. Adv Pediatr. 1999;46:493–506.

    PubMed  CAS  Google Scholar 

  31. Kaul R, Gao GP, Matalon R, et al. Identification and expression of eight novel mutations among non-Jewish patients with Canavan disease. Am J Hum Genet. 1996;59:95–102.

    PubMed  CAS  Google Scholar 

  32. Kronn D, Oddoux C, Phillips J, Ostrer H. Prevalence of Canavan disease heterozygotes in the New York metropolitan Ashkenazi Jewish population. Am J Hum Genet. 1995;57:1250–1252.

    PubMed  CAS  Google Scholar 

  33. Sugarman EA, Allitto BA. Carrier testing for seven diseases common in the Ashkenazi Jewish population: implications for counseling and testing. Obstet Gynecol. 2001;97:S38–S39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edelmann, L., Yang, Y., Kornreich, R. (2007). Molecular Genetic Testing for Metabolic Disorders. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics