Advertisement

Mycobacterial Infections

  • Betty A. Forbes
Chapter
  • 1.7k Downloads

Abstract

Microbiology laboratories have developed and introduced clinical molecular assays for mycobacteria during the last several years because of the need for a reliable and rapid means of diagnosing tuberculosis (TB) for public health and therapeutic reasons. Molecular tests are used for identification of mycobacteria directly in clinical specimens, for mycobacterial identification, and for determination of drug susceptibilities.

Keywords

Mycobacterial Infection Polymerase Chain Reac Mycobacterium Tuberculosis Complex Central Nervous System Tuberculosis Nonrespiratory Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley SP, Reed SL, Cantanzaro A. Clinical efficacy of the amplified Mycobacterium tuberculosis direct test for the diagnosis of pulmonary tuberculosis. Am J Resp Crit Care Med. 1996;153:1606–1610.PubMedGoogle Scholar
  2. 2.
    Nardell E, Bautolte S, Shampra P, et al. Tuberculosis without culture confirmation (abstract). Am Rev Respir Dis. 1995;151:A336.Google Scholar
  3. 3.
    American Thoracic Society Workshop: rapid diagnostic tests for tuberculosis. What is the appropriate use? Am J Respir Crit CareMed. 1997;155:1804–1814.Google Scholar
  4. 4.
    Barnes PF. Rapid diagnostic tests for tuberculosis. Am J Respir Crit Care Med. 1997;155:1497–1498.PubMedGoogle Scholar
  5. 5.
    Jonas V, Acedo M, Clarridge JE, et al. A multi-center evaluation of MTD and culture compared to clinical diagnosis [abstract]. In: Abstracts of the 98th General Meeting of the American Society for Microbiology; May 17–21, 1998; Atlanta, GA. Abstract L-31.Google Scholar
  6. 6.
    Cantanzaro A, Perry S, Clarridge JE, et al. The role of clinical suspicion in evaluating a new diagnostic test for active tuberculosis. JAMA. 2000;283:639–645.CrossRefGoogle Scholar
  7. 7.
    O’Sullivan CE, Miller DR, Schneider PS, et al. Evaluation of Gen-Probe Amplified Mycobacterium tuberculosis Direct Test by using respiratory and nonrespiratory specimens in a tertiary care center laboratory. J Clin Microbiol. 2002;40:1723–1727.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergmann JS, Yuoh G, Fish G, et al. Clinical evaluation of the enhanced Gen-Probe Amplified Mycobacterium tuberculosis Direct Test for rapid diagnosis of tuberculosis in prison inmates. J Clin Microbiol. 1999;37:1419–1425.PubMedGoogle Scholar
  9. 9.
    Peirsimoni C, Callegaro A, Scarparo C, et al. Comparative evaluation of the new Gen-Probe Mycobacterium tuberculosis Direct Test and the semiautomated Abbott LCx Mycobacterium tuberculosis assay for the direct detection of Mycobacterium tuberculosis complex in respiratory and extrapulmonary specimens. J Clin Microbiol. 1998;36:3601–3604.Google Scholar
  10. 10.
    Centers for Disease Control and Prevention. Nucleic acid amplification tests for the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep. 1996;45:950–952.Google Scholar
  11. 11.
    Centers for Disease Control and Prevention. Update: nucleic acid amplification tests for tuberculosis. MMWR Morb Mortal Wkly Rep. 2000;49:593–594.Google Scholar
  12. 12.
    Baker CA, Cartwright CP, Williams DN, et al. Early detection of central nervous system tuberculosis with the Gen-Probe nucleic acid amplification assay: utility in an inner city hospital. Clin Infect Dis. 2002;35:339–342.PubMedCrossRefGoogle Scholar
  13. 13.
    Bonington A, Strang JIG, Klapper PE, et al. Use of Roche AMPLICOR Mycobacterium tuberculosis PCR in early diagnosis of tuberculous meningitis. J Clin Microbiol. 1998;36:1251–1254.PubMedGoogle Scholar
  14. 14.
    Lang AM, Feris-Iglesias J, Pena C, et al. Clinical evaluation of the Gen-Probe Amplified Direct Test for detection of Mycobacterium tuberculosis complex organisms in cerebrospinal fluid. J Clin Microbiol. 1998;36:2191–2194.PubMedGoogle Scholar
  15. 15.
    Roos KL. Mycobacterium tuberculosis meningitis and other etiologies of the aseptic meningitis syndrome. Semin Neurol. 2000;20:329–335.PubMedCrossRefGoogle Scholar
  16. 16.
    Peirsimoni C, Scarparo C, Piccoli P, et al. Performance assessment of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex from respiratory and extrapulmonary specimens. J Clin Microbiol. 2002;40:4138–4142.CrossRefGoogle Scholar
  17. 17.
    Scarparo C, Piccoli P, Rigon A, et al. Comparison of enhanced Mycobacterium tuberculosis Amplified Direct Test with COBAS AMPLICOR Mycobacteriumtuberculosis assay for direct detection of Mycobacterium tuberculosis complex in respiratory and extrapulmonary specimens. J Clin Microbiol. 2000;38:1559–1562.PubMedGoogle Scholar
  18. 18.
    Forbes BA, Hicks KE. Ability of PCR assay to identify Mycobacterium tuberculosis in BACTEC 12B vials. J Clin Microbiol. 1994;32:17251728.Google Scholar
  19. 19.
    Katila ML, Katila P, Erkinjuntti-Pekkanen R. Accelerated detection of mycobacteria with MGIT 960 and COBAS AMPLICOR systems. J Clin Microbiol. 2000;38:960–964.PubMedGoogle Scholar
  20. 20.
    Scarparo C, Piccoli P, Rigon A, et al. Direct identification of mycobacteria from MB/BacT Alert 3D bottles: comparative evaluation of two commercial probe assays. J Clin Microbiol. 2001;39:3222–3227.PubMedCrossRefGoogle Scholar
  21. 21.
    Bennedsen J, Thosen V, Pfyffer GE, et al. Utility of PCR in diagnosing pulmonary tuberculosis. J Clin Microbiol. 1996;34:1407–1411.PubMedGoogle Scholar
  22. 22.
    Desjardin LE, Chen Y, Perkins MD, et al. Comparison of the ABI 7700 System (TaqMan) and competitive PCR for quantitation of IS6110 DNA in sputum during treatment of tuberculosis. J Clin Microbiol. 1998;36:1964–1968.PubMedGoogle Scholar
  23. 23.
    Hellyer TJ, Desjardin LE, Hehman GL, et al. Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. J Clin Microbiol. 1999;37:290–295.PubMedGoogle Scholar
  24. 24.
    Griffith DE, Brown-Elliott BA, Wallace RJ. Diagnosing nontuberculous mycobacterial lung disease. Infect Dis Clin N Am. 2002;16:235–249.CrossRefGoogle Scholar
  25. 25.
    Kirschner P, Springer B, Vogel U, et al. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a two year experience in a clinical laboratory. J Clin Microbiol. 1993;31:2882–2889.PubMedGoogle Scholar
  26. 26.
    Brunello F, Ligozzi M, Cristelli E, et al. Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol. 2001;39:2799–2806.PubMedCrossRefGoogle Scholar
  27. 27.
    Padilla E, Gonzalez V, Manterola JM, et al. Comparative evaluation of the new version of the INNO-LiPA mycobacteria and GenoType Mycobacterium assays for identification of Mycobacterium species from MB/BacT liquid cultures artificially inoculated with Mycobacterial strains. J Clin Microbiol. 2004;42:3083–3088.PubMedCrossRefGoogle Scholar
  28. 28.
    Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998;79:3–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Burgos MV. Molecular epidemiology of tuberculosis. Eur Respir J. 2002;20(suppl 36):54s–65s.CrossRefGoogle Scholar
  30. 30.
    Tortolli E, Bartoloni A, Böttger EC, et al. Burden of unidentifiable mycobacteria in a reference laboratory. J Clin Microbiol. 2001;39:4058–4065.CrossRefGoogle Scholar
  31. 31.
    Turenne CY, Tschetter L, Wolfe J, et al. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol. 2001;39:3637–3648.PubMedCrossRefGoogle Scholar
  32. 32.
    da Silva Rocha A, Barreto AM, Campos CED, et al. Novel allelic variants of mycobacteria isolated in Brazil as determined by PCR-restriction enzyme analysis of hsp65. J Clin Microbiol. 2002;40:4191–4196.PubMedCrossRefGoogle Scholar
  33. 33.
    National Committee for Clinical Laboratory Standards. Molecular Diagnostic Methods for Infectious Diseases: Approved Guidelines [MM3-A]. Wayne, PA: National Committee for Clinical Laboratory Standards; 1993.Google Scholar
  34. 34.
    National Committee for Clinical Laboratory Standards. Quantitative Molecular Methods for Infectious Disease: Proposed Guidelines. Wayne, PA: National Committee for Clinical Laboratory Standards; 2001. NCCLS Document MM6-P.Google Scholar
  35. 35.
    Lisby G. Application of nucleic acid amplification in clinical microbiology. Mol Biotechnol. 1999;12:75–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Wolk D, Mitchell S, Patel R. Principles of molecular biology testing methods. Infect Dis Clin N Am. 2001;15:1157–1204.CrossRefGoogle Scholar
  37. 37.
    Chang CL, Kim HH, Son HC, et al. False-positive growth of Mycobacterium tuberculosis attributable to laboratory contamination confirmed by restriction fragment length polymorphism analysis. Int J Tuberc Lung Dis. 2001;5:861–867.PubMedGoogle Scholar
  38. 38.
    Burman WJ, Reves RR. Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatment. Clin Infect Dis. 2000;31:1390–1395.PubMedCrossRefGoogle Scholar
  39. 39.
    Noordhoek GT, vanEmbden JDA, Kolk AH. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J Clin Microbiol. 1996;34:2522–2525.PubMedGoogle Scholar
  40. 40.
    Brunello F, Ligozzi M, Cristelli E, et al. Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol. 2001;39:2799–2806.PubMedCrossRefGoogle Scholar
  41. 41.
    Patnaik M, Liegmann K, Peter JB. Rapid detection of smear-negative Mycobacterium tuberculosis by PCR and sequencing for rifampin resistance with DNA extracted directly from slides. J Clin Microbiol. 2001;39:51–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Stender H, Lund K, Petersen KH, et al. Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Mycobacterium cultures. J Clin Microbiol. 1999;37:2760–2765.PubMedGoogle Scholar
  43. 43.
    Riska PF, Su Y, Bardarov S, et al. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx box. J Clin Microbiol. 1999;37:1144–1149.PubMedGoogle Scholar
  44. 44.
    Park DJ, Drobniewski FA, Meyer A, et al. Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J Clin Microbiol. 2003;41:680–688.PubMedCrossRefGoogle Scholar
  45. 45.
    Schneegass I, Köhler JM. Flow-through polymerase chain reactions in chip thermocyclers. J Biotech. 2001;82:101–121.Google Scholar
  46. 46.
    Gingeras TR, Ghandour G, Wang E, et al. Simultaneous genotyping and species identification using hybridisation pattern recognition analysis of generic Mycobacterium arrays. Genome Res. 1998;8:435–448.PubMedGoogle Scholar
  47. 47.
    Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol. 1999;37:49–55.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Betty A. Forbes
    • 1
    • 2
  1. 1.Department of Pathology and MedicineVirginia Common University Health SystemsRichmondUSA
  2. 2.Medical College of Virginia CampusRichmondUSA

Personalised recommendations