Advertisement

Bacterial Pathogens

  • Ruth Ann Luna
  • James Versalovic
Chapter
  • 1.7k Downloads

Abstract

Bacterial infections represent important diseases worldwide despite decades of antibiotic therapy. Diverse microbial pathogens continue t rapidly evolve and present challenges for medical practice that will require ongoing refinements in laboratory-based diagnostic strategies. Since the 1970s, the steady parade of bacterial pathogen discoveries such as Legionella pneumophila, Helicobacter pylori, and Bartonella henselae have highlighted the ongoing importance of bacterial evolution in human infectious diseases. Established bacterial pathogens such as Streptococcus pyogenes and Mycobacterium tuberculosis have reemerged during the past two decades. Drugresistant pathogens including multidrug-resistant organisms spread to different geographic areas, ignoring regional boundaries with the assistance of global immigration and travel. Advances in medicine including oncology and transplantation have resulted in greater numbers of immunocompromised patients with increased risks for invasive bacterial infections.

Keywords

Multiplex Polymerase Chain Reaction Mycoplasma Pneumoniae Diagn Microbiol Infect Gastric Biopsy Specimen Endpoint Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold LJ Jr, Hammond PW, Wiese WA, et al. Assay formats involving acridinium-ester-labeled DNA probes. Clin Chem. 1989;35:1588–1594.PubMedGoogle Scholar
  2. 2.
    Olsen GJ, Woese CR. Ribosomal RNA: a key to phylogeny. FASEB J. 1993;7:113–123.PubMedGoogle Scholar
  3. 3.
    Cole JR, Chai B, Marsh TL, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003;31:442–443.PubMedCrossRefGoogle Scholar
  4. 4.
    Devulder G, Perriere G, Baty F, et al. BIBI, a Bioinformatics Bacterial Identification Tool. J Clin Microbiol. 2003;41:1785–1787.PubMedCrossRefGoogle Scholar
  5. 5.
    Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999;2:299–305.PubMedCrossRefGoogle Scholar
  6. 6.
    Tang YW, Ellis NM, Hopkins MK, et al. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol. 1998;36:3674–3679.PubMedGoogle Scholar
  7. 7.
    Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 1984;12:5837–5852.PubMedCrossRefGoogle Scholar
  8. 8.
    Van de P Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24:3381–3391.CrossRefGoogle Scholar
  9. 9.
    Jonasson J, Olofsson M, Monstein HJ. Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS. 2002;110:263–272.PubMedCrossRefGoogle Scholar
  10. 10.
    Grahn N, Olofsson M, Ellnebo-Svedlund K, et al. Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiol Lett. 2003;219:87–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.PubMedCrossRefGoogle Scholar
  12. 12.
    Qian Q, Tang YW, Kolbert CP, et al. Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument truepositive and false-positive results. J Clin Microbiol. 2001;39:3578–3582.PubMedCrossRefGoogle Scholar
  13. 13.
    Ronaghi M, Karamohamed S, Pettersson B, et al. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242:84–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Oliveira K, Procop GW, Wilson D, et al. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol. 2002;40:247–251.PubMedCrossRefGoogle Scholar
  15. 15.
    Grisold AJ, Leitner E, Muhlbauer G, et al. Detection of methicillinresistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J Clin Microbiol. 2002;40:2392–2397.PubMedCrossRefGoogle Scholar
  16. 16.
    Elsayed S, Chow BL, Hamilton NL, et al. Development and validation of a molecular beacon probe-based real-time polymerase chain reaction assay for rapid detection of methicillin resistance in Staphylococcus aureus. Arch Pathol Lab Med. 2003;127:845–849.PubMedGoogle Scholar
  17. 17.
    Tan TY, Corden S, Barnes R, et al. Rapid identification of methicillinresistant Staphylococcus aureus from positive blood cultures by realtime fluorescence PCR. J Clin Microbiol. 2001;39:4529–4531.PubMedCrossRefGoogle Scholar
  18. 18.
    Shrestha NK, Tuohy MJ, Hall GS, et al. Rapid identification of Staphylococcus aureus and the mecA gene from BacT/ALERT blood culture bottles by using the LightCycler system. J Clin Microbiol. 2002;40:2659–2661.PubMedCrossRefGoogle Scholar
  19. 19.
    Edwards KJ, Kaufmann ME, Saunders NA. Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR. J Clin Microbiol. 2001;39:3047–3051.PubMedCrossRefGoogle Scholar
  20. 20.
    Noya FJ, Baker CJ. Prevention of group B streptococcal infection. Infect Dis Clin North Am. 1992;6:41–55.PubMedGoogle Scholar
  21. 21.
    Ke D, Menard C, Picard FJ, et al. Development of conventional and real-time PCR assays for the rapid detection of group B streptococci. Clin Chem. 2000;46:324–331.PubMedGoogle Scholar
  22. 22.
    Pollard AJ, Probe G, Trombley C, et al. Evaluation of a diagnostic polymerase chain reaction assay for Neisseria meningitidis in North America and field experience during an outbreak. Arch Pathol Lab Med. 2002;126:1209–1215.PubMedGoogle Scholar
  23. 23.
    Molling P, Jacobsson S, Backman A, et al. Direct and rapid identification and genogrouping of meningococci and porA amplification by LightCycler PCR. J Clin Microbiol. 2002;40:4531–4535.PubMedCrossRefGoogle Scholar
  24. 24.
    Saravolatz LD, Manzor O, VanderVelde N, et al. Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis. 2003;36:40–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Corless CE, Guiver M, Borrow R, et al. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol. 2001;39:1553–1558.PubMedCrossRefGoogle Scholar
  26. 26.
    Bitnun A, Ford-Jones EL, Petric M, et al. Acute childhood encephalitis and Mycoplasma pneumoniae. Clin Infect Dis. 2001;32:1674–1684.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang G, Clark CG, Rodgers FG. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J Clin Microbiol. 2002;40:3613–3619.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsen HY, Jian LZ. Development and use of a multiplex PCR system for the rapid screening of heat labile toxin I, heat stable toxin II and Shiga-like toxin I and II genes of Escherichia coli in water. J Appl Microbiol. 1998;84:585–592.PubMedCrossRefGoogle Scholar
  29. 29.
    Fenollar F, Fournier PE, Raoult D, et al. Quantitative detection of Tropheryma whippelii DNA by real-time PCR. J Clin Microbiol. 2002;40:1119–1120.PubMedCrossRefGoogle Scholar
  30. 30.
    Dutly F, Altwegg M. Whipple’s disease and “Tropheryma whippelii.” Clin Microbiol Rev. 2001;14:561–58PubMedCrossRefGoogle Scholar
  31. 31.
    Versalovic J, Fox JG. Helicobacter. In: Murray P, Baron EJ, Jorgensen JH, et al., eds. Manual of Clinical Microbiology. Washington, DC: ASM Press; 2003:915–928.Google Scholar
  32. 32.
    van Doorn LJ, Henskens Y, Nouhan N, et al. The efficacy of laboratory diagnosis of Helicobacter pylori infections in gastric biopsy specimens is related to bacterial density and vacA, cagA, and iceA genotypes. J Clin Microbiol. 2000;38:13–17.PubMedGoogle Scholar
  33. 33.
    Pena JA, Fox JG, Ferraro MJ, et al. Molecular resistance testing of Helicobacter pylori in gastric biopsies. Arch Pathol Lab Med. 2001;125:493–497.PubMedGoogle Scholar
  34. 34.
    Pena JA, McNeil K, Fox JG, et al. Molecular evidence of Helicobacter cinaedi organisms in human gastric biopsy specimens. J Clin Microbiol. 2002;40:1511–1513.PubMedCrossRefGoogle Scholar
  35. 35.
    Chisholm SA, Owen RJ, Teare EL, et al. PCR-based diagnosis of Helicobacter pylori infection and real-time determination of clarithromycin resistance directly from human gastric biopsy samples. J Clin Microbiol. 2001;39:1217–1220.PubMedCrossRefGoogle Scholar
  36. 36.
    He Q, Wang JP, Osato M, et al. Real-time quantitative PCR for detection of Helicobacter pylori. J Clin Microbiol. 2002;40:3720–3728.PubMedCrossRefGoogle Scholar
  37. 37.
    Buck GE, Eid NS. Diagnosis of Mycoplasma pneumoniae pneumonia in pediatric patients by polymerase chain reaction (PCR). Pediatr Pulmonol. 1995;20:297–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Daxboeck F, Krause R, Wenisch C. Laboratory diagnosis of Mycoplasma pneumoniae infection. Clin Microbiol Infect. 2003;9:263–273.PubMedCrossRefGoogle Scholar
  39. 39.
    Taylor-Robinson D. Infections due to species of Mycoplasma and Ureaplasma: an update. Clin Infect Dis. 1996;23:671–682.PubMedGoogle Scholar
  40. 40.
    Ferwerda A, Moll HA, de Groot R. Respiratory tract infections by Mycoplasma pneumoniae in children: a review of diagnostic and therapeutic measures. Eur J Pediatr. 2001;160:483–491.PubMedCrossRefGoogle Scholar
  41. 41.
    Dorigo-Zetsma JW, Zaat SA, Wertheim-van Dillen PM, et al. Comparison of PCR, culture, and serological tests for diagnosis of Mycoplasma pneumoniae respiratory tract infection in children. J Clin Microbiol. 1999;37:14–17.PubMedGoogle Scholar
  42. 42.
    Hardegger D, Nadal D, Bossart W, et al. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. J Microbiol Methods. 2000;41:45–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Welti M, Jaton K, Altwegg M, et al. Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis. 2003;45:85–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Tilley PA, Kanchana MV, Knight I, et al. Detection of Bordetella pertussis in a clinical laboratory by culture, polymerase chain reaction, and direct fluorescent antibody staining; accuracy, and cost. Diagn Microbiol Infect Dis. 2000;37:17–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Chan EL, Antonishyn N, McDonald R, et al. The use of TaqMan PCR assay for detection of Bordetella pertussis infection from clinical specimens. Arch Pathol Lab Med. 2002;126:173–176.PubMedGoogle Scholar
  46. 46.
    Qin X, Turgeon DK, Ingersoll BP, et al. Bordetella pertussis PCR: simultaneous targeting of signature sequences. Diagn Microbiol Infect Dis. 2002;43:269–275.PubMedCrossRefGoogle Scholar
  47. 47.
    Sloan LM, Hopkins MK, Mitchell PS, et al. Multiplex LightCycler PCR assay for detection and differentiation of Bordetella pertussis and Bordetella parapertussis in nasopharyngeal specimens. J Clin Microbiol. 2002;40:96–100.PubMedCrossRefGoogle Scholar
  48. 48.
    Lievano FA, Reynolds MA, Waring AL, et al. Issues associated with and recommendations for using PCR to detect outbreaks of pertussis. J Clin Microbiol. 2002;40:2801–2805.PubMedCrossRefGoogle Scholar
  49. 49.
    Committee on Infectious Diseases AAP. Group A streptococcal infections. In: Pickering LK, Peter G, Baker C, et al., eds. Red Book 2000: Report of the Committee on Infectious Diseases. Elk Grove Village, IL: American Academy of Pediatrics; 2000:526–536.Google Scholar
  50. 50.
    Chapin KC, Blake P, Wilson CD. Performance characteristics and utilization of rapid antigen test, DNA probe, and culture for detection of group A streptococci in an acute care clinic. J Clin Microbiol. 2002;40:4207–4210.PubMedCrossRefGoogle Scholar
  51. 51.
    Uhl JR, Adamson SC, Vetter EA, et al. Comparison of LightCycler PCR, rapid antigen immunoassay, and culture for detection of group A streptococci from throat swabs. J Clin Microbiol. 2003;41(1):242–249.PubMedCrossRefGoogle Scholar
  52. 52.
    Petrich A, Luinstra K, Page B, et al. Effect of routine use of a multiplex PCR for detection of vanA-and vanB-mediated enterococcal resistance on accuracy, costs and earlier reporting. Diagn Microbiol Infect Dis. 2001;41:215–220.PubMedCrossRefGoogle Scholar
  53. 53.
    Palladino S, Kay ID, Costa AM, et al. Real-time PCR for the rapid detection of vanA and vanB genes. Diagn Microbiol Infect Dis. 2003;45:81–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Versalovic J, Shortridge D, Kibler K, et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother. 1996;40:477–480.PubMedGoogle Scholar
  55. 55.
    Versalovic J, Fox JG. Helicobacter. In: Murray P, Baron EJ, Jorgensen JH, et al., eds. Manual of Clinical Microbiology. Washington, DC: ASM Press; 2003:915–928.Google Scholar
  56. 56.
    Burke JP. Patient safety: infection control—a problem for patient safety. N Engl J Med. 2003;348:651–656.PubMedCrossRefGoogle Scholar
  57. 57.
    Hacek DM, Suriano T, Noskin GA, et al. Medical and economic benefit of a comprehensive infection control program that includes routine determination of microbial clonality. Am J Clin Pathol. 1999;111:647–654.PubMedGoogle Scholar
  58. 58.
    Goering RV. Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction fragment patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol. 1993;14:595–600.PubMedCrossRefGoogle Scholar
  59. 59.
    Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–2239.PubMedGoogle Scholar
  60. 60.
    van Belkum A, van Leeuwen W, Kaufmann ME, et al. Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J Clin Microbiol. 1998;36:1653–1659.PubMedGoogle Scholar
  61. 61.
    Deplano A, Schuermans A, Van Eldere J, et al. Multicenter evaluation of epidemiological typing of methicillin-resistant Staphylococcus aureus strains by repetitive-element PCR analysis. The European Study Group on Epidemiological Markers of the ESCMID. J Clin Microbiol. 2000;38:3527–3533.PubMedGoogle Scholar
  62. 62.
    Murchan S, Kaufmann ME, Deplano A, et al. Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol. 2003;41:1574–1585.PubMedCrossRefGoogle Scholar
  63. 63.
    Grimont F, Grimont PA. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol. 1986;137B:165–175.PubMedCrossRefGoogle Scholar
  64. 64.
    Price CS, Huynh H, Paule S, et al. Comparison of an automated ribotyping system to restriction endonuclease analysis and pulsed-field gel electrophoresis for differentiating vancomycin-resistant Enterococcus faecium isolates. J Clin Microbiol. 2002;40:1858–1861.PubMedCrossRefGoogle Scholar
  65. 65.
    Aarnisalo K, Autio T, Sjoberg AM, et al. Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. J Food Prot. 2003;66:249–255.PubMedGoogle Scholar
  66. 66.
    D’Agata EM, Gerrits MM, Tang YW, et al. Comparison of pulsed-field gel electrophoresis and amplified fragment-length polymorphism for epidemiological investigations of common nosocomial pathogens. Infect Control Hosp Epidemiol. 2001;22:550–554.PubMedCrossRefGoogle Scholar
  67. 67.
    Fry NK, Bangsborg JM, Bergmans A, et al. Designation of the European Working Group on Legionella Infection (EWGLI) amplified fragment length polymorphism types of Legionella pneumophila serogroup 1 and results of intercentre proficiency testing using a standard protocol. Eur J Clin Microbiol Infect Dis. 2002;21:722–728.PubMedCrossRefGoogle Scholar
  68. 68.
    Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–6535.PubMedCrossRefGoogle Scholar
  69. 69.
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–7218.PubMedCrossRefGoogle Scholar
  70. 70.
    Clarke SC. Nucleotide sequence-based typing of bacteria and the impact of automation. Bioessays. 2002;24:858–862.PubMedCrossRefGoogle Scholar
  71. 71.
    Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–6831.PubMedCrossRefGoogle Scholar
  72. 72.
    Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol. 1994;5:25–40.Google Scholar
  73. 73.
    Warren RM, Streicher EM, Sampson SL, et al. Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J Clin Microbiol. 2002;40:4457–4465.PubMedCrossRefGoogle Scholar
  74. 74.
    van der Zanden AG, Kremer K, Schouls LM, et al. Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol. 2002;40:4628–4639.PubMedCrossRefGoogle Scholar
  75. 75.
    Healy M, Huong J, Bittner T, et al. Microbial DNA typing by automated rep-PCR. J Clin Microbiol. 2005;43:199–207.PubMedCrossRefGoogle Scholar
  76. 76.
    van der Z A, Verbakel H, van Zon JC, et al. Molecular genotyping of Staphylococcus aureus strains: comparison of repetitive element sequence-based PCR with various typing methods and isolation of a novel epidemicity marker. J Clin Microbiol. 1999;37:342–349.Google Scholar
  77. 77.
    Peacock SJ, de Silva GD, Justice A, et al. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as tools for typing Staphylococcus aureus isolates in a microepidemiological setting. J Clin Microbiol. 2002;40:3764–3770.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ruth Ann Luna
    • 1
  • James Versalovic
    • 2
    • 3
  1. 1.Molecular Microbiology Laboratory, Department of PathologyBaylor College of MedicineHoustonUSA
  2. 2.Department of Pathology and Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUSA
  3. 3.Microbiology LaboratoriesTexas Children’s HospitalHoustonUSA

Personalised recommendations