Sexually Transmitted Diseases

  • Jeanne A. Jordan


Chlamydia trachomatis (CT) and Neisseria gonorrheae (GC) are presented together, not because of their similarities in disease presentation, but because of the current trend in screening samples for both simultaneously. Historically, these organisms were identified using very different laboratory methods: CT by tissue culture and GC by growth in specialized bacterial medium. However, over the past decade a revolutionary change has taken place in the approach used to detect these two sexually transmitted infections (STIs). In many instances, molecular testing, either nucleic acid hybridization or nucleic acid amplification, has replaced culture and immunoassays.


Chlamydia Trachomatis Neisseria Gonorrhoeae Trichomonas Vaginalis Human Papillo COBAS AMPLICOR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moss T, ed. International Handbook of Chlamydia. Exeter, UK: Polestar Wheatons Ltd; 2001.Google Scholar
  2. 2.
    Scholes D, Stergachis A, Heidrich FE, et al. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. N Engl J Med. 1996;334:1362–1366.PubMedCrossRefGoogle Scholar
  3. 3.
    Burstein GR, Zenilman JM. Nongonococcal urethritis—a new paradigm. Clin Infect Dis. 1999;28(suppl 1):S66–S73.PubMedCrossRefGoogle Scholar
  4. 4.
    Judson FN. Gonorrhea. Med Clin North Am. 1990;74:1353–1366.PubMedGoogle Scholar
  5. 5.
    Koumans EH, Johnson RE, Knapp JS, et al. Laboratory testing for Neisseria gonorrhoeae by recently introduced nonculture tests: a performance review with clinical and public health considerations. Clin Infect Dis. 1998;27:1171–1180.PubMedGoogle Scholar
  6. 6.
    Chernesky MA, Martin DH, Hook EW, et al. Ability of new APTIMA CT and APTIMA GC assays to detect Chlamydia trachomatis and Neisseria gonorrhoeae in male urine and urethral swabs. J Clin Microbiol. 2005;43:127–131.PubMedCrossRefGoogle Scholar
  7. 7.
    Gaydos CA, Quinn TC, Willis D, et al. Performance of the APTIMA combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol. 2003;41:304–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Modarress KJ, Cullen AP, Jaffurs WJ Sr, et al. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in swab specimens by the Hybrid Capture II and PACE 2 nucleic acid probe tests. Sex Transm Dis. 1999;26:303–308.PubMedCrossRefGoogle Scholar
  9. 9.
    Van der Pol B. COBAS Amplicor: an automated PCR system for detection of C. trachomatis and N. gonorrhoeae. Expert Rev Mol Diagn. 2002;2:379–389.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Der Pol B, Ferrero DV, Buck-Barrington L, et al. Multicenter evaluation of the BDProbeTec ET System for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol. 2001;39:1008–1016.CrossRefGoogle Scholar
  11. 11.
    Bianchi A, Moret F, Desrues JM, et al. PreservCyt transport medium used for the ThinPrep Pap test is a suitable medium for detection of Chlamydia trachomatis by the COBAS Amplicor CT/NG test: results of a preliminary study and future implications. J Clin Microbiol. 2002;40:1749–1754.PubMedCrossRefGoogle Scholar
  12. 12.
    Chong S, Jang D, Song X, et al. Specimen processing and concentration of Chlamydia trachomatis added can influence false-negative rates in the LCx assay but not in the APTIMA Combo 2 assay when testing for inhibitors. J Clin Microbiol. 2003;41:778–782.PubMedCrossRefGoogle Scholar
  13. 13.
    Diemert DJ, Libman MD, Lebel P. Confirmation by 16S rRNA PCR of the COBAS AMPLICOR CT/NG test for diagnosis of Neisseria gonorrhoeae infection in a low-prevalence population. J Clin Microbiol. 2002;40:4056–4059.PubMedCrossRefGoogle Scholar
  14. 14.
    Farrell DJ. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J Clin Microbiol. 1999;37:386–390.PubMedGoogle Scholar
  15. 15.
    Livengood CH 3rd, Wrenn JW. Evaluation of COBAS AMPLICOR (Roche): accuracy in detection of Chlamydia trachomatis and Neisseria gonorrhoeae by coamplification of endocervical specimens. J Clin Microbiol. 2001;39:2928–2932.PubMedCrossRefGoogle Scholar
  16. 16.
    Palmer HM, Mallinson H, Wood RL, et al. Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J Clin Microbiol. 2003;41:835–837.PubMedCrossRefGoogle Scholar
  17. 17.
    McAdam AJ. Discrepant analysis: how can we test a test? J Clin Microbiol. 2000;38:2027–2029.PubMedGoogle Scholar
  18. 18.
    Schachter J, Hook EW, Martin DH, et al. Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: All NAATs are not created equal. J Clin Microbiol. 2005;43:1372–1373.PubMedCrossRefGoogle Scholar
  19. 19.
    Schachter J, Hook EW 3rd, McCormack WM, et al. Ability of the Digene hybrid capture II test to identify Chlamydia trachomatis and Neisseria gonorrhoeae in cervical specimens. J Clin Microbiol. 1999;37:3668–3671.PubMedGoogle Scholar
  20. 20.
    Stary A. Correct samples for diagnostic tests in sexually transmitted diseases: which sample for which test? FEMS Immunol Med Microbiol. 1999;24:455–459.PubMedGoogle Scholar
  21. 21.
    Watson EJ, Templeton A, Russell I, et al. The accuracy and efficacy of screening tests for Chlamydia trachomatis: a systematic review. J Med Microbiol. 2002;51:1021–1031.PubMedGoogle Scholar
  22. 22.
    Rosenstraus M, Wang Z, Chang SY, et al. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol. 1998;36:191–197.PubMedGoogle Scholar
  23. 23.
    Hagblom P, Korch C, Jonsson AB, et al. Intragenic variation by sitespecific recombination in the cryptic plasmid of Neisseria gonorrhoeae. J Bacteriol. 1986;167:231–237.PubMedGoogle Scholar
  24. 24.
    Miyada CG, Born TL. A DNA sequence for the discrimination of Neisseria gonorrhoeae from other Neisseria species. Mol Cell Probes. 1991;5:327–335.PubMedCrossRefGoogle Scholar
  25. 25.
    Van Der Pol B, Martin DH, Schachter J, et al. Enhancing the specificity of the COBAS AMPLICOR CT/NG test for Neisseria gonorrhoeae by retesting specimens with equivocal results. J Clin Microbiol. 2001;39:3092–3098.CrossRefGoogle Scholar
  26. 26.
    Centers for Disease Control. Sexually transmitted diseases treatment guidelines 2002. MMWR Recomm Rep. 2002;51:1–78.Google Scholar
  27. 27.
    Gaydos CA, Crotchfelt KA, Shah N, et al. Evaluation of dry and wet transported intravaginal swabs in detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in female soldiers by PCR. J Clin Microbiol. 2002;40:758–761.PubMedCrossRefGoogle Scholar
  28. 28.
    Hardy PH, Hardy JB, Nell EE, et al. Prevalence of six sexually transmitted disease agents among pregnant inner-city adolescents and pregnancy outcome. Lancet. 1984;2:333–337.PubMedCrossRefGoogle Scholar
  29. 29.
    Mahony JB, Jang D, Chong S, et al. Detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Ureaplasma urealyticum, and Mycoplasma genitalium in first-void urine specimens by multiplex polymerase chain reaction. Mol Diagn. 1997;2:161–168.PubMedCrossRefGoogle Scholar
  30. 30.
    Ostergaard L, Moller JK, Andersen B, et al. Diagnosis of urogenital Chlamydia trachomatis infection in women based on mailed samples obtained at home: multipractice comparative study. BMJ. 1996;313:1186–1189.PubMedGoogle Scholar
  31. 31.
    Sugunendran H, Birley HD, Mallinson H, et al. Comparison of urine, first and second endourethral swabs for PCR based detection of genital Chlamydia trachomatis infection in male patients. Sex Transm Infect. 2001;77:423–426.PubMedCrossRefGoogle Scholar
  32. 32.
    Wiesenfeld HC, Lowry DL, Heine RP, et al. Self-collection of vaginal swabs for the detection of chlamydia, gonorrhea, and trichomoniasis: opportunity to encourage sexually transmitted disease testing among adolescents. Sex Transm Dis. 2001;28:321–325.PubMedCrossRefGoogle Scholar
  33. 33.
    Petrin D, Delgaty K, Bhatt R, et al. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–317.PubMedGoogle Scholar
  34. 34.
    Graves A, Gardner WA Jr. Pathogenicity of Trichomonas vaginalis. Clin Obstet Gynecol. 1993;36:145–152.PubMedCrossRefGoogle Scholar
  35. 35.
    Schwebke JR. Update of trichomoniasis. Sex Transm Infect. 2002;78:378–379.PubMedCrossRefGoogle Scholar
  36. 36.
    Krieger JN. Trichomoniasis in men: old issues and new data. Sex Transm Dis. 1995;22:83–96.PubMedGoogle Scholar
  37. 37.
    Laga M, Manoka A, Kivuvu M, et al. Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS. 1993;7:95–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Moodley P, Connolly C, Sturm AW. Interrelationships among human immunodeficiency virus type 1 infection, bacterial vaginosis, trichomoniasis, and the presence of yeasts. J Infect Dis. 2002;185:69–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Rendon-Maldonado J, Espinosa-Cantellano M, Soler C, et al. Trichomonas vaginalis: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. J Eukaryot Microbiol. 2003;50:43–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Sorvillo F, Kerndt P. Trichomonas vaginalis and amplification of HIV-1 transmission. Lancet. 1998;351:213–214.PubMedCrossRefGoogle Scholar
  41. 41.
    Cotch MF, Pastorek JG 2nd, Nugent RP, et al. Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis. 1997;24:353–360.PubMedCrossRefGoogle Scholar
  42. 42.
    Klebanoff MA, Carey JC, Hauth JC, et al. Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N Engl J Med. 2001;345:487–493.PubMedCrossRefGoogle Scholar
  43. 43.
    Sutton MY, Sternberg M, Nsuami M, et al. Trichomoniasis in pregnant human immunodeficiency virus-infected and human immunodeficiency virus-uninfected Congolese women: prevalence, risk factors, and association with low birth weight. Am J Obstet Gynecol. 1999;181:656–662.PubMedCrossRefGoogle Scholar
  44. 44.
    McCann JS. Comparison of direct microscopy and culture in the diagnosis of trichomoniasis. Br J Vener Dis. 1974;50:450–452.PubMedGoogle Scholar
  45. 45.
    Garber GE, Sibau L, Ma R, et al. Cell culture compared with broth for detection of Trichomonas vaginalis. J Clin Microbiol. 1987;25:1275–1279.PubMedGoogle Scholar
  46. 46.
    Caliendo AM, Jordan JA, Green AM, et al. Real-time PCR improves detection of Trichomonas vaginalis infection compared with culture using self-collected vaginal swabs. Infect Dis Obstet Gynecol. 2005;13:145–150.PubMedCrossRefGoogle Scholar
  47. 47.
    Heine RP, Wiesenfeld HC, Sweet RL, et al. Polymerase chain reaction analysis of distal vaginal specimens: a less invasive strategy for detection of Trichomonas vaginalis. Clin Infect Dis. 1997;24:985–987.PubMedGoogle Scholar
  48. 48.
    Jordan JA, Lowery D, Trucco M. TaqMan-based detection of Trichomonas vaginalis DNA from female genital specimens. J Clin Microbiol. 2001;39:3819–3822.PubMedCrossRefGoogle Scholar
  49. 49.
    Kengne P, Veas N, Vidal J, et al. Trichomonas vaginalis: repeated DNA target for highly sensitive and specific polymerase chain reaction diagnosis. Cell Mol Biol. 1994;40:819–831.PubMedGoogle Scholar
  50. 50.
    Madico G, Quinn TC, Rompalo A, et al. Diagnosis of Trichomonas vaginalis infection by PCR using vaginal swab samples. J Clin Microbiol. 1998;36:3205–3210.PubMedGoogle Scholar
  51. 51.
    Mayta H, Gilman RH, Calderon MM, et al. 18S ribosomal DNA-based PCR for diagnosis of Trichomonas vaginalis. J Clin Microbiol. 2000;38:2683–2687.PubMedGoogle Scholar
  52. 52.
    Paces J, Urbankova V, Urbanek P. Cloning and characterization of a repetitive DNA sequence specific for Trichomonas vaginalis. Mol Biochem Parasitol. 1992;54:247–255.PubMedCrossRefGoogle Scholar
  53. 53.
    Riley DE, Roberts MC, Takayama T, et al. Development of a polymerase chain reaction-based diagnosis of Trichomonas vaginalis. J Clin Microbiol. 1992;30:465–472.PubMedGoogle Scholar
  54. 54.
    Reid R, Greenberg M, Jenson AB, et al. Sexually transmitted papillomaviral infections. I. The anatomic distribution and pathologic grade of neoplastic lesions associated with different viral types. Am J Obstet Gynecol. 1987;156:212–222.PubMedGoogle Scholar
  55. 55.
    Gissmann L, Wolnik L, Ikenberg H, et al. Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA. 1983;80:560–563.PubMedCrossRefGoogle Scholar
  56. 56.
    Bosch FX, Manos MM, Munoz N, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995;87:796–802.PubMedCrossRefGoogle Scholar
  57. 57.
    McCance DJ, Walker PG, Dyson JL, et al. Presence of human papillomavirus DNA sequences in cervical intraepithelial neoplasia. Br Med J (Clin Res Ed). 1983;287:784–788.Google Scholar
  58. 58.
    Zbar AP, Fenger C, Efron J, et al. The pathology and molecular biology of anal intraepithelial neoplasia: comparisons with cervical and vulvar intraepithelial carcinoma. Int J Colorectal Dis. 2002;17:203–215.PubMedCrossRefGoogle Scholar
  59. 59.
    Crum CP, Ikenberg H, Richart RM, et al. Human papillomavirus type 16 and early cervical neoplasia. N Engl J Med. 1984;310:880–883.PubMedCrossRefGoogle Scholar
  60. 60.
    Herrero R. Epidemiology of cervical cancer. J Natl Cancer Inst Monogr. 1996;21:1–6.PubMedGoogle Scholar
  61. 61.
    Ellerbrock TV, Chiasson MA, Bush TJ, et al. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA. 2000;283:1031–1037.PubMedCrossRefGoogle Scholar
  62. 62.
    Svare EI, Kjaer SK, Worm AM, et al. Risk factors for genital HPV DNA in men resemble those found in women: a study of male attendees at a Danish STD clinic. Sex Transm Infect. 2002;78:215–218.PubMedCrossRefGoogle Scholar
  63. 63.
    Behbakht K, Friedman J, Heimler I, et al. Role of the vaginal microbiological ecosystem and cytokine profile in the promotion of cervical dysplasia: a case-control study. Infect Dis Obstet Gynecol. 2002;10:181–186.PubMedCrossRefGoogle Scholar
  64. 64.
    Chin-Hong PV, Palefsky JM. Natural history and clinical management of anal human papillomavirus disease in men and women infected with human immunodeficiency virus. Clin Infect Dis. 2002;35:1127–1134.PubMedCrossRefGoogle Scholar
  65. 65.
    Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders. Lancet. 1998;351:1833–1839.PubMedCrossRefGoogle Scholar
  66. 66.
    Smith JS, Herrero R, Bosetti C, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst. 2002;94:1604–1613.PubMedGoogle Scholar
  67. 67.
    Wallin KL, Wiklund F, Luostarinen T, et al. A population-based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer. 2002;101:371–374.PubMedCrossRefGoogle Scholar
  68. 68.
    Cothran MM, White JP. Adolescent behavior and sexually transmitted diseases: the dilemma of human papillomavirus. Health Care Women Int. 2002;23:306–319.PubMedCrossRefGoogle Scholar
  69. 69.
    Ressel GW. CDC releases 2002 guidelines for treating STDs: part II. Human papillomavirus and hepatitis. Am Fam Physician. 2002;66:1996, 1999.PubMedGoogle Scholar
  70. 70.
    Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–19.PubMedCrossRefGoogle Scholar
  71. 71.
    Ronnett BM, Manos MM, Ransley JE, et al. Atypical glandular cells of undetermined significance (AGUS): cytopathologic features, histopathologic results, and human papillomavirus DNA detection. Hum Pathol. 1999;30:816–825.PubMedCrossRefGoogle Scholar
  72. 72.
    Schenck U, Herbert A, Solomon D, et al. Terminology. International Academy of Cytology Task Force summary. Diagnostic cytology towards the 21st century: an international expert conference and tutorial. Acta Cytol. 1998;42:5–15.PubMedGoogle Scholar
  73. 73.
    Cox JT, Lorincz AT, Schiffman MH, et al. Human papillomavirus testing by hybrid capture appears to be useful in triaging women with a cytologic diagnosis of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 1995;172:946–954.PubMedCrossRefGoogle Scholar
  74. 74.
    Solomon D, Schiffman M, Tarone R. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J Natl Cancer Inst. 2001;93:293–299.PubMedCrossRefGoogle Scholar
  75. 75.
    Berkova Z, Kaufmann RH, Unger ER, et al. The effect of time interval between referral and colposcopy on detection of human papillomavirus DNA and on outcome of biopsy. Am J Obstet Gynecol. 2003;188:932–937.PubMedCrossRefGoogle Scholar
  76. 76.
    Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA. 2002;288:1749–1757.PubMedCrossRefGoogle Scholar
  77. 77.
    Nobbenhuis MA, Walboomers JM, Helmerhorst TJ, et al. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet. 1999;354:20–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang SS, Walker JL, Schiffman M, et al. Evaluating the risk of cervical precancer with a combination of cytologic, virologic, and visual methods. Cancer Epidemiol Biomarkers Prev. 2005;14:2665–2668.PubMedCrossRefGoogle Scholar
  79. 79.
    Peyton CL, Schiffman M, Lorincz AT, et al. Comparison of PCR-and hybrid capture-based human papillomavirus detection systems using multiple cervical specimen collection strategies. J Clin Microbiol. 1998;36:3248–3254.PubMedGoogle Scholar
  80. 80.
    Gravitt PE, Peyton CL, Alessi TQ, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38:357–361.PubMedGoogle Scholar
  81. 81.
    Kornegay JR, Shepard AP, Hankins C, et al. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format. J Clin Microbiol. 2001;39:3530–3536.PubMedCrossRefGoogle Scholar
  82. 82.
    Manos MM, Ting Y, Wright DK, et al. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells. 1989;7:209–214.Google Scholar
  83. 83.
    Coutlee F, Gravitt P, Kornegay J, et al. Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol. 2002;40:902–907.PubMedCrossRefGoogle Scholar
  84. 84.
    van Doorn LJ, Quint W, Kleter B, et al. Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay. J Clin Microbiol. 2002;40:979–983.PubMedCrossRefGoogle Scholar
  85. 85.
    Menezes G, Euscher E, Schwartz B, et al. Utility of the in situ detection of HPV in Pap smears diagnosed as within normal limits. Acta Cytol. 2001;45:919–926.PubMedGoogle Scholar
  86. 86.
    Castle PE, Solomon D, Hildesheim A, et al. Stability of archived liquid-based cervical cytologic specimens. Cancer. 2003;99:89–96.PubMedCrossRefGoogle Scholar
  87. 87.
    Khan MJ, Castle PE, Lorincz AT, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Nat Cancer Inst. 2005;97:1072–1079.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jeanne A. Jordan
    • 1
  1. 1.Department of PathologyUniversity of Pittsburgh/Magee Women’s HospitalPittsburghUSA

Personalised recommendations