Skip to main content

Viral Infections of the Central Nervous System

  • Chapter

Abstract

Viral infections of the central nervous system (CNS) are relatively infrequent and usually result in a benign, selflimiting disease. 14 However, in a small percentage of cases, viral infection of the CNS can have extremely serious consequences that result in a spectrum of permanent neurologic damage or death. Viral agents gain access to the CNS by either neuronal or hematogenous spread, and infections can occur at a multitude of sites including the spinal cord, leptomeninges, dorsal nerve roots, nerves, and brain parenchyma. Viral CNS infections are classified clinically as either meningitis or encephalitis, although a close interrelationship occurs between the two disease states.14 Host factors (age, sex, immune status, genetic differences) and viral factors (serotype, receptor preference, cell tropism, viral load) in concert with geographic and seasonal factors contribute to the potential for the development of CNS disease.14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cassady KA, Whitley RJ. Pathogenesis and pathophysiology of viral central nervous system diseases. In: Scheld WM, Whitey RJ, Durack DT, eds. Infections of the Central Nervous System. Philadelphia, Lippincott-Raven; 1997:7–22.

    Google Scholar 

  2. Cassady KA, Whitley RJ. Viral central nervous system infections. In: Richman DD, Whitley RJ, Hayden FG, eds. Clinical Virology. Washington, DC. ASM Press; 2002:27–44.

    Google Scholar 

  3. Hammer SM, Connolly KJ. Viral aseptic meningitis in the United States: clinical features, viral etiologies, and differential diagnosis. Curr Clin Top Infect Dis. 1992;12:1–25.

    PubMed  CAS  Google Scholar 

  4. Rotbart HA. Viral meningitis. Semin Neurol. 2000;20:277–292.

    Article  PubMed  CAS  Google Scholar 

  5. Hosoya M, Honzumi K, Sato M, et al. Application of PCR for various neurotropic viruses on the diagnosis of viral meningitis. J Clin Virol. 1998;11:117–124.

    Article  PubMed  CAS  Google Scholar 

  6. Gubler DJ, Roehrig JT. Arboviruses (Togaviridae and Flaviviridae). In: Collier L, ed. Topley and Wilson’s Microbiology and Microbial Infections. ASM Press, London; 1996.

    Google Scholar 

  7. Centers for Disease Control and Prevention. Division of Vector-Borne Infectious Diseases. Arboviral encephalitides. August 2005. Available at: http://www.cdc.gov/ncidod/dvbid/index.htm.

    Google Scholar 

  8. Centers for Disease Control and Prevention. Division of Vector-Borne Infectious Diseases. West Nile virus. August 2005. Available at: http://www.cdc.gov/ncidod/dvbid/westnile/index.htm.

    Google Scholar 

  9. Hibberd PL, Snydman DR. Cytomegalovirus infection in organ transplant recipients. Infect Dis Clin North Am. 1995;9:863–877.

    PubMed  CAS  Google Scholar 

  10. Ives DV. Cytomegalovirus disease in AIDS. AIDS. 1997;11:1791–1797.

    Article  PubMed  CAS  Google Scholar 

  11. Cinque P, Marenzi R, Ceresa D. Cytomegalovirus infections of the nervous system. Intervirology. 1997;40:85–97.

    PubMed  CAS  Google Scholar 

  12. Safak M, Khalili K. An overview: human polyomavirus JC virus and its associated disorders. J Neurovirol. 2003;9(suppl 1):3–9.

    Article  PubMed  CAS  Google Scholar 

  13. Landry ML. Frequency of normal cerebrospinal fluid protein level and leukocyte count in enterovirus meningitis. J Clin Virol. 2005;32:73–74.

    Article  PubMed  Google Scholar 

  14. Cinque P, Cleator GM, Weber T, et al. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psychiatry 1996;61:339–345.

    Article  PubMed  CAS  Google Scholar 

  15. Thomson R, Bertram H. Laboratory diagnosis of central nervous system infections. Infect Dis Clin North Am. 2001;15:1047–1071.

    Article  PubMed  Google Scholar 

  16. Reiber H, Lange P. Quantitation of virus specific antibodies in cerebrospinal fluid and serum; sensitive and specific detection of antibody synthesis in the brain. Clin Chem. 1991;37:1153–1160.

    PubMed  CAS  Google Scholar 

  17. Cinque P, Bossolasco S, Lundkvist A. Molecular analysis of cerebrospinal fluid in viral diseases of the central nervous system. J Clin Virol. 2003;26:1–28.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson A, Martin D, Karabatsos N, et al. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38:1827–1831.

    PubMed  CAS  Google Scholar 

  19. Roehrig JT, Nash D, Maldin B, et al. Persistence of virus-reactive serum immunoglobulin M antibody in confirmed West Nile virus encephalitis cases. Emerg Infect Dis. 2003;9:376–379.

    PubMed  CAS  Google Scholar 

  20. van Regenmortel MHG, Fauquet CM, Bishop EB, et al. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. New York: Academic Press; 2000.

    Google Scholar 

  21. Pallansch MA, Roos RP. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM, Griffin DE, et al., eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2001:723–775.

    Google Scholar 

  22. Rotbart HA. Enteroviral infections of the central nervous system. Clin Infect Dis. 1995;20:971–981.

    PubMed  CAS  Google Scholar 

  23. Rotbart HA. 1990. Enzymatic RNA amplification of the enteroviruses. J Clin Microbiol. 1990;28:438–442.

    PubMed  CAS  Google Scholar 

  24. Rotbart HA. Diagnosis of enteroviral meningitis with the polymerase chain reaction. J Pediatr. 1990;117:85–89.

    Article  PubMed  CAS  Google Scholar 

  25. Zoll GJ, Melchers JG, Kopecka H, et al. General primer-mediated polymerase chain reaction detection of enteroviruses; application for diagnostic routine and persistent infections. J Clin Microbiol. 1992;30:160–165.

    PubMed  CAS  Google Scholar 

  26. Oberste MS, Maher K, Flemister MR, et al. Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol. 2000;38:1170–1174.

    PubMed  CAS  Google Scholar 

  27. Ramers C, Billman G, Hartin M, et al. Impact of a diagnostic cerebrospinal fluid enterovirus polymerase chain reaction test on patient management. JAMA. 2000;283:2680–2685.

    Article  PubMed  CAS  Google Scholar 

  28. Stellrecht KA, Harding I, Hussain FM, et al. A one-step RT-PCR assay using an enzyme-linked detection system for the diagnosis of enterovirus meningitis. J Clin Virol. 2000;17:143–149.

    Article  PubMed  CAS  Google Scholar 

  29. Fox JD, Han S, Samuelson A, et al. Development and evaluation of nucleic acid sequence based amplification (NASBA) for diagnosis of enterovirus infections using the NucliSens Basic Kit. J Clin Virol. 2002;24:117–130.

    Article  PubMed  CAS  Google Scholar 

  30. Verstrepen WA, Bruynseels P, Mertens AH. Evaluation of a rapid realtime RT-PCR assay for detection of enterovirus RNA in cerebrospinal fluid specimens. J Clin Virol. 2002;25:S39–S43.

    Article  PubMed  CAS  Google Scholar 

  31. Bourlet T, Caro V, Minjolle S, et al. New PCR test that recognizes all human prototypes if enterovirus: application for clinical diagnosis. J Clin Microbiol. 2003;41:1750–1752.

    Article  PubMed  CAS  Google Scholar 

  32. Landry ML, Garner R, Ferguson D. Rapid enterovirus RNA detection in clinical specimens by using nucleic acid sequence-based amplification. J Clin Microbiol. 2003;41:346–350.

    Article  PubMed  CAS  Google Scholar 

  33. Sillekens P, Foolen H, Overdijk M, et al. Development of a real-time NASBA application for the diagnosis of enteroviral meningitis [abstract T4]. University of South Florida Clinical Virology Symposium, Pan American Society for Clinical Virology, Clearwater, Florida; April, 2003.

    Google Scholar 

  34. Ginocchio CC, Zhang F, Malhotra A, et al. Development, technical performance, and clinical evaluation of a NucliSens Basic Kit application for detection of enterovirus RNA in cerebrospinal fluid. J Clin Microbiol. 2005;43:2616–2623.

    Article  PubMed  CAS  Google Scholar 

  35. Landry ML, Garner R, Ferguson D. Real-time Rapid nucleic acid sequence-based amplification using molecular beacons for detection of enterovirus RNA in clinical specimens. J Clin Microbiol. 2005;43:3136–3139.

    Article  PubMed  CAS  Google Scholar 

  36. International Agency for Research on Cancer. Epstein-Barr virus and Kaposi’s sarcoma herpesvirus/human herpes virus 8. IARC Monogr Eval Carcinog Risk Chem Hum. 1997;70:101–373.

    Google Scholar 

  37. Jackson AC. Acute viral infections [review]. Curr Opin Neurol. 1995;8:170–174.

    Article  PubMed  CAS  Google Scholar 

  38. Whitley RJ. Herpes simplex viruses. In: Knipe DM, Howley PM, Griffin DE, et al., eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2001:2461–2509.

    Google Scholar 

  39. Tedder DG, Ashley R, Tyler R, et al. Herpes simplex virus infection as a cause of benign recurrent lymphocytic meningitis. Ann Intern Med. 1994;121:334–338.

    PubMed  CAS  Google Scholar 

  40. Kimberlin DW, Whitley RJ. Neonatal herpes: what have we learned? Semin Pediatr Infect Dis. 2005;16:7–16.

    Article  PubMed  Google Scholar 

  41. Sauerbrei A, Eichorn U, Hottenrott G, et al. Virologic diagnosis of herpes simplex encephalitis. J Clin Virol. 2000;17:31–36.

    Article  PubMed  CAS  Google Scholar 

  42. Lakeman F, Whitley R, and the National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J Infect Dis. 1995;171:857–863.

    PubMed  CAS  Google Scholar 

  43. Arvin AM. Varicella zoster virus. In: Knipe DM, Howley PM, Griffin DE, et al., eds. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2001:2731–2768.

    Google Scholar 

  44. Gnann J, Whitley R. Herpes zoster. N Engl J Med. 2002;347:340–346.

    Article  PubMed  Google Scholar 

  45. Gilden DH, Kleinschmidt-DeMaster BK, LaGuardia JJ, et al. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med. 2000;342:635–645.

    Article  PubMed  CAS  Google Scholar 

  46. Sauerbrei A, Eichorn U, Schacke M, et al. Laboratory diagnosis of herpes zoster. J Clin Virol. 1999;14:31–36.

    Article  PubMed  CAS  Google Scholar 

  47. Rowley A, Whitley R, Lakeman F, et al. Rapid detection of herpes simplex virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet. 1990;335:440–441.

    Article  PubMed  CAS  Google Scholar 

  48. Minjolle S, Michelet C, Jusselin I, et al. Amplification of the six major human herpesviruses from cerebrospinal fluid in a single PCR. J Clin Microbiol. 1999;37:950–953.

    PubMed  CAS  Google Scholar 

  49. Read SJ, Kurtz JB. Laboratory diagnosis of common viral infections of the central nervous system by using a single multiplex PCR screening assay. J Clin Microbiol. 1999;37:1352–1355.

    PubMed  CAS  Google Scholar 

  50. Espy M, Uhl J, Mitchell P, et al. Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCycler PCR. J Clin Microbiol. 2000;38:759–799.

    Google Scholar 

  51. Johnson G, Nelson S, Petric M, et al. Comprehensive PCR-based assay for detection and species identification of human herpesviruses. J Clin Microbiol. 2000;38:3274–3279.

    PubMed  CAS  Google Scholar 

  52. Quereda C, Corral I, Laguna F, et al. Diagnostic utility of a multiplex herpesvirus PCR assay performed with cerebrospinal fluid from human immunodeficiency virus-infected patients with neurological disorders. J Clin Microbiol. 2000;38:3061–3067.

    PubMed  CAS  Google Scholar 

  53. Read S, Mitchell J, Fink C. LightCycler multiplex PCR for the laboratory diagnosis of common viral infections of the central nervous system. J Clin Microbiol. 2001;39:3056–3059.

    Article  PubMed  CAS  Google Scholar 

  54. Weidmann M, Meyer-Konig U, Hufert F. Rapid detection of herpes simplex virus and varicella-zoster virus infections by real-time PCR. J Clin Microbiol. 2003;41:1565–1568.

    Article  PubMed  CAS  Google Scholar 

  55. Braun DK, Dominguez G, Pellett PE. Human herpesvirus 6. Clin Microbiol Rev. 1997;10:521–567.

    PubMed  CAS  Google Scholar 

  56. Secchiero P, Zella D, Crowley R, et al. Quantitative PCR for human herpesviruses 6 and 7. J Clin Microbiol. 1995;33:2124–2130.

    PubMed  CAS  Google Scholar 

  57. Van den Bosch G, Locatelli G, Geerts L, et al. Development of reverse transcriptase PCR assays for detection of active human herpesvirus 6 infection. J Clin Microbiol. 2001;39:2308–2310.

    Article  PubMed  Google Scholar 

  58. Tang Y, Espy M, Persing D, et al. Molecular evidence and clinical significance of herpesvirus coinfection in the central nervous system. J Clin Microbiol. 1997;35:2869–2872.

    PubMed  CAS  Google Scholar 

  59. Campbell GL, Marfin AA, Lanciotti RS, et al. West Nile virus. Lancet Infect Dis. 2002;2:519–529.

    Article  PubMed  Google Scholar 

  60. Harrington T, Kuehnert MJ, Kamel H, et al. West Nile virus infection transmitted by blood transfusion. Transfusion. 2003;43:1018–1022.

    Article  PubMed  Google Scholar 

  61. Johnson A, Martin D, Karabatsos N, et al. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38:1827–1831.

    PubMed  CAS  Google Scholar 

  62. Martin D, Muth D, Brown T, et al. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assay for routine diagnosis of arboviral infections. J Clin Microbiol. 2000;38:1823–1826.

    PubMed  CAS  Google Scholar 

  63. Lanciotti R, Kerst A, Nasci R, et al. Rapid detection ofWest Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38:4066–4071.

    PubMed  CAS  Google Scholar 

  64. Lanciotti R, Kerst A. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis Encephalitis viruses. J Clin Microbiol. 2001;39:4506–4513.

    Article  PubMed  CAS  Google Scholar 

  65. Scaramozzino N, Crance J, Jouan A, et al. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive hemi-nested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39:1922–1927.

    Article  PubMed  CAS  Google Scholar 

  66. Lambert A, Martin D, Lanciotti R. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays. J Clin Microbiol. 2003;41:379–385.

    Article  PubMed  CAS  Google Scholar 

  67. White D, Kramer L, Backenson P, et al. Mosquito surveillance and polymerase chain reaction detection of West Nile virus, New York State. Emerg Infect Dis. 2001;7:643–649.

    Article  PubMed  CAS  Google Scholar 

  68. Ginocchio CC. Laboratory diagnosis of human cytomegalovirus (HCMV) central nervous system disease in AIDS patients. Int J Antimicrob Agents. 2000;16:447–453.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang F, Tetali S, Wang XP, et al. Detection of human cytomegalovirus pp67 late gene transcripts in cerebrospinal fluid of human immunodeficiency virus type 1 infected patients by nucleic acid sequence based amplification. J Clin Microbiol. 2000;38:1920–1925.

    PubMed  CAS  Google Scholar 

  70. Hammarin A, Bogdanovic G, Svenhem V, et al. Analysis of PCR as a tool for detection of JC virus DNA in cerebrospinal fluid for diagnosis of progressive multifocal leukoencephalopathy. J Clin Microbiol. 1996;34:2929–2932.

    PubMed  CAS  Google Scholar 

  71. De Viedma D, Alonson R, Miralles P, et al. Dual qualitative-quantitative nested PCR for detection of JC virus in cerebrospinal fluid: high potential for evaluation and monitoring of progressive multifocal leukoencephalopathy in AIDS patients receiving highly active antiretroviral therapy. J Clin Microbiol. 1999;37:724–728.

    Google Scholar 

  72. Whiley D, Mackay I, Sloots T. Detection and differentiation of Human polyomaviruses JC and BK by LightCycler PCR. J Clin Microbiol. 2001;39:4357–4361.

    Article  PubMed  CAS  Google Scholar 

  73. Albright AV, Soldan SS, Gonzalez-Scarano F. Pathogenesis of human immunodeficiency virus-induced neurological disease. J Neurovirol. 2003;9:222–227.

    Article  PubMed  CAS  Google Scholar 

  74. McArthur JC, Haughey N, Gartner S, et al. Human immunodeficiency virus-associated dementia: An evolving disease. J Neurovirol. 2003;9:205–221.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ginocchio, C.C. (2007). Viral Infections of the Central Nervous System. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics