Advertisement

Acute Lymphoblastic Leukemia

  • Carlo Alberto Scrideli
  • Giovanni Cazzaniga
  • Andrea Biondi
Chapter

Abstract

Acute lymphoblastic leukemia (ALL) is a heterogeneous group of disorders that originates from B- and T-cell progenitors.1,2 Different B- and T-cell ALL can be recognized according to immunologic and molecular criteria.3, 4, 5 The identification of the molecular events underlying the process of leukemia transformation has provided not only important biological information,5, 6, 7 but also clinically relevant genetic markers for the identification of prognostically relevant ALL subgroups and for the molecular monitoring of minimal residual disease (MRD). For ALL, immunoglobulin (IG) and T-cell receptor (TCR) gene rearrangement studies are used as markers of clonality and for MRD detection, and the identification of different genetic variations is used to define different ALL subgroups.

Keywords

Acute Lymphoblastic Leukemia Minimal Residual Disease Gene Rearrangement Fusion Transcript Childhood Acute Lymphoblastic Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pui CH. Childhood leukaemias. N Engl J Med. 1995;332:1618–1630.PubMedCrossRefGoogle Scholar
  2. 2.
    Pui CH, Evans WE. Acute lymphoblastic leukaemias. N Engl J Med. 1998;339:605–615.PubMedCrossRefGoogle Scholar
  3. 3.
    Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry [review]. Cytometry. 1999;38:139–152.PubMedCrossRefGoogle Scholar
  4. 4.
    Neale GA, Coustan-Smith E, Pan Q, et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 1999;13:1221–1226.PubMedCrossRefGoogle Scholar
  5. 5.
    Yeoh EJ, Roos ME, Shurtleff AS, et al. Classification, subtype discovery, and prediction outcome in pediatric acute lymphoblastic leukemia by gene expression profile. Cancer Cell. 2002;1:133–143.PubMedCrossRefGoogle Scholar
  6. 6.
    Pui CH, Behm FG, Crist WM. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood. 1993;82:343–362.PubMedGoogle Scholar
  7. 7.
    Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143–149.PubMedCrossRefGoogle Scholar
  8. 8.
    Cline MJ. The molecular basis of leukaemia. N Engl J Med. 1994;330:328–336.PubMedCrossRefGoogle Scholar
  9. 9.
    Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–581.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta. 1991;198:1–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwartz RS. Jumping genes and the immunoglobulin V gene system. N Engl J Med. Cambridge, UK, 1995;333:42–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Dongen JJM, Langerak AW. Immunoglobulin and T-cell receptor rearrangements. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:145–167.Google Scholar
  13. 13.
    Potter MN, Steward CG, Oakhill A. The significance of detection of minimal residual disease in childhood acute lymphoblastic leukemia. Br J Haematol. 1993;83:412–418.PubMedGoogle Scholar
  14. 14.
    Van Dongen JJM, Szczepanski T, De Bruijn MAC, et al. Detection of minimal residual disease in acute leukemia patients. Cytokines Cell Mol Ther. 1996;2:121–133.Google Scholar
  15. 15.
    Yano T, Pullman A, Andade R, et al. A common Vd2-Dd2-Dd3 T cell receptor gene rearrangement in precursor B acute lymphoblastic leukemia. Br J Haematol. 1991;79:44–49.PubMedGoogle Scholar
  16. 16.
    Brisco MJ, Tan LW, Orsborn AM, Morley AA. Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol. 1990;75:163–167.PubMedGoogle Scholar
  17. 17.
    Scrideli CA, Simoes AL, Defavery R, Bernardes JE, Duarte MH, Tone LG. Childhood B lineage acute lymphoblastic leukemia clonality study by the polymerase chain reaction. J Pediatr Hematol Oncol. 1997;19:516–522.PubMedCrossRefGoogle Scholar
  18. 18.
    Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized MRD detection in ALL using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:110–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991;198:93–174.PubMedCrossRefGoogle Scholar
  20. 20.
    Szczepanski T, Beishuizen A, Pongers-Willemse MJ, et al. Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukaemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 1999;13:196–205.PubMedCrossRefGoogle Scholar
  21. 21.
    Tkachuck DC, Griesser H, Takirara Y, et al. Rearrangement of T-cell delta locus in lymphoproliferative disorders. Blood. 1988;72:353–357.Google Scholar
  22. 22.
    Biondi A, Francia de Celli P, Rossi V, et al. High prevalence of T-cell receptor V delta 2-(D)-D delta 3 or D delta 1/2-D delta 3 rearrangements in B-precursor acute lymphoblastic leukemias. Blood. 1990;75:1834–1840.PubMedGoogle Scholar
  23. 23.
    Trainor KJ, Brisco MJ, Wan JH, et al. Gene rearrangement in B-and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood. 1991;78:192–196.PubMedGoogle Scholar
  24. 24.
    Campana D, Pui CH. Detection of minimal residual disease in acute leukaemia: methodological and clinical significance. Blood. 1995;85:1416–1434.PubMedGoogle Scholar
  25. 25.
    Ghali DW, Panzer S, Fischer S, et al. Heterogeneity of the T cell receptor delta gene indicating subclone formation in acute precursor B cell leukemias. Blood. 1995;85:2795–2801.PubMedGoogle Scholar
  26. 26.
    Szczepanki T, LangeraK AW, Wolvers-Tettero IL, et al. Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia. 1998;12:1081–1088.CrossRefGoogle Scholar
  27. 27.
    Szczepanski T, van der Velden VH, Hoogeveen PG, et al. Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lym-MPC3 phoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103:3798–3804.PubMedCrossRefGoogle Scholar
  28. 28.
    Foroni L, Harrison CJ, Hoffbrand AV, Potter MN. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol. 1999;105:7–24.PubMedGoogle Scholar
  29. 29.
    Yin JA, Tobal K. Detection of minimal residual disease in acute myeloid leukaemia: methodologies, clinical and biological significance. Br J Haematol. 1999;106:578–590.PubMedCrossRefGoogle Scholar
  30. 30.
    Look AT. Oncogenic transcription factors in the human acute leukaemias. Science. 1997;278:1059–1064.PubMedCrossRefGoogle Scholar
  31. 31.
    Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96:24–33.PubMedGoogle Scholar
  32. 32.
    Cazzaniga G, Rossi V, Biondi A. Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol. 2002;15:21–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87:1211–1224.PubMedGoogle Scholar
  34. 34.
    Privitera E, Luciano A, Ronchetti D, et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia. 1994;8:554–559.PubMedGoogle Scholar
  35. 35.
    Cazzaniga G, Lanciotti M, Rossi V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119:445–453.PubMedCrossRefGoogle Scholar
  36. 36.
    Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–3356.PubMedGoogle Scholar
  37. 37.
    Scrideli CA, Cazzaniga G, Fazio G, et al. Gene expression profile unravels significant differences between childhood and adult Ph+ acute lymphoblastic leukemia. Leukemia. 2003;17:2234–2237.PubMedCrossRefGoogle Scholar
  38. 38.
    Schrappe M, Arico M, Harbott J, et al. Philadelphia chromosomepositive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood. 1998;92:2730–2741.PubMedGoogle Scholar
  39. 39.
    Borkhardt A, Cazzaniga G, Viehmann S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood. 1997;90:571–577.PubMedGoogle Scholar
  40. 40.
    Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10:1529–1530.PubMedGoogle Scholar
  41. 41.
    Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood. 1998;91:1716–1722.PubMedGoogle Scholar
  42. 42.
    Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155:1479–1485.PubMedGoogle Scholar
  43. 43.
    van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901–1928.PubMedCrossRefGoogle Scholar
  44. 44.
    Cave H, van der Werff Ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med. 1998;339:591–598.PubMedCrossRefGoogle Scholar
  45. 45.
    Biondi A, Valsecchi MG, Seriu T, et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM Study Group. Leukemia. 2000;14:1939–1943.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–1738.PubMedCrossRefGoogle Scholar
  47. 47.
    Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318–2357PubMedCrossRefGoogle Scholar
  48. 48.
    Scrideli CA, Kashima S, Cipolloti R, Defavery R, Bernardes JE, Tone LG. Minimal residual disease in Brazilian children with acute lymphoid leukemia: comparison of three detection methods by PCR. Leuk Res. 2002;26:431–438.PubMedCrossRefGoogle Scholar
  49. 49.
    Scrideli CA, Queiroz RG, Bernardes JE, Valera ET, Tone LG. PCR detection of clonal IgH and TCR gene rearrangements at the end of induction as a non-remission criterion in children with ALL: comparison with standard morphologic analysis and risk group classification. Med Pediatr Oncol. 2003;41:10–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92:4072–4079.PubMedGoogle Scholar
  51. 51.
    Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol. 1998;102:860–871.PubMedCrossRefGoogle Scholar
  52. 52.
    Fardel S, Kurzrock R, Estrov Z. Minimal residual disease in hematologic disorders. Arch Pathol Lab Med. 1999;123:1030–1034.Google Scholar
  53. 53.
    Sklar J. Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol. 1991;1:1521–1523.Google Scholar
  54. 54.
    Cross NC. Quantitative PCR techniques and applications. Br J Haematol. 1995;89:693–697.PubMedCrossRefGoogle Scholar
  55. 55.
    Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005;90:382–390.PubMedGoogle Scholar
  56. 56.
    Verhagen OJ, Willemse MJ, Breunis WB, et al. Application of germline IgH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14:1426–1435.PubMedCrossRefGoogle Scholar
  57. 57.
    Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12:2006–2014.PubMedCrossRefGoogle Scholar
  58. 58.
    Germano G, Rossi V, Poli A, et al. Use of T-cell receptor g germline “TaqMan” probes for the analysis of minimal residual disease in childhood T-ALL by Real-Time Quantitative PCR. Blood. 1999;94:204bGoogle Scholar
  59. 59.
    Willems P, Verhagen O, Segeren C, et al. Consensus strategy to quantitate malignant cells in myeloma patients is validated in a multicenter study. Belgium-Dutch Hematology-Oncology Group. Blood. 2000;96:63–70.PubMedGoogle Scholar
  60. 60.
    Eckert C, Scrideli CA, Taube T, et al. Comparison between TaqMan and LightCycler technologies for quantification of minimal residual disease by using immunoglobulin and T-cell receptor genes consensus probes. Leukemia. 2003;17:2517–2524.PubMedCrossRefGoogle Scholar
  61. 61.
    van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17:1013–1034.PubMedCrossRefGoogle Scholar
  62. 62.
    Hochhaus A, Weisser A, La Rosee P, et al. Detection and quantification of residual disease in chronic myelogenous leukaemia. Leukemia. 2000;14:998–1005.PubMedCrossRefGoogle Scholar
  63. 63.
    Pallisgaard N, Clausen N, Schroder H, Hokland P. Rapid and sensitive minimal residual disease detection in acute leukaemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer. 1999;26:355–365.PubMedCrossRefGoogle Scholar
  64. 64.
    Krauter J, Wattjes MP, Nagel S, et al. Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol. 1999;107:80–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe Against Cancer program. Leukemia. 2003;17:2474–2486PubMedCrossRefGoogle Scholar
  66. 66.
    Guidal C, Vilmer E, Grandchamp B, Cave H. A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2002;16:762–764.PubMedCrossRefGoogle Scholar
  67. 67.
    Landman-Parker J, Aubin J, Delabesse E, et al. Simplified strategies for minimal residual disease detection in B cell precursor acute lymphoblastic leukaemia. Br J Haematol. 1996;95:281–290.PubMedCrossRefGoogle Scholar
  68. 68.
    Evans PA, Short MA, Owen RG, et al. Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16:3616–3627.PubMedGoogle Scholar
  69. 69.
    Bottaro M, Berti E, Biondi A, et al. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood. 1994;83:3271–3278.PubMedGoogle Scholar
  70. 70.
    Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382–385.PubMedGoogle Scholar
  71. 71.
    Kitchingman GR, Mirro J, Stass S, et al. Biologic and prognostic significance of the presence of more than two mu heavy-chain genes in childhood acute lymphoblastic leukemia of B precursor cell origin. Blood. 1986;67:698–703.PubMedGoogle Scholar
  72. 72.
    Kuang S, Gu L, Dong S, et al. Long-term follow-up of minimal residual disease in childhood acute lymphoblastic leukemia patients by polymerase chain reaction analysis of multiple clone-specific or malignancy-specific gene markers. Cancer Genet Cytogenet. 1996;88:110–117.PubMedCrossRefGoogle Scholar
  73. 73.
    Green E, McConville CM, Powell JE, et al. Clonal diversity of Ig and T-cell-receptor gene rearrangements identifies a subset of childhood B-precursor acute lymphoblastic leukemia with increased risk of relapse. Blood. 1998;92:952–958.PubMedGoogle Scholar
  74. 74.
    Scrideli CA, Defavery R, Bernardes JE, Tone LG. Prognostic significance of bi/oligoclonality in childhood acute lymphoblastic leukemia as determined by polymerase chain reaction. Sao Paulo Med J. 2001;119:175–180.PubMedCrossRefGoogle Scholar
  75. 75.
    Brumpt C, Delabesse E, Beldjord K, et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood. 2000;96:2254–2261.PubMedGoogle Scholar
  76. 76.
    Hara J, Benedict SH, Yumura K, Ha-Kawa K, Gelfand EW. Rearrangement of variable region T cell receptor γ genes in acute lymphoblastic leukemia. Vγ gene usage differs in mature and immature T cells. J Clin Invest. 1999;83:1277–1283.CrossRefGoogle Scholar
  77. 77.
    Beishuizen A, Verhoeven MA, Van Wering ER, et al. Analysis of Ig and T cell receptor genes in 40 childhood acute lymphoblastic leukemia at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood. 1994;83:2238–2247.PubMedGoogle Scholar
  78. 78.
    Steward CG, Goulden NJ, Katz F, et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood. 1994;83:1355–1362.PubMedGoogle Scholar
  79. 79.
    Scrideli CA, Queiroz RG, Kashima S, Sankarankutty BO, Tone LG. T cell receptor gamma (TCRG) gene rearrangements in Brazilian children with acute lymphoblastic leukemia: analysis and implications for the study of minimal residual disease. Leuk Res. 2004;28:267–273.PubMedCrossRefGoogle Scholar
  80. 80.
    Campana D, Van Dongen JJM, Pui CH. Minimal residual disease. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:413–442.Google Scholar
  81. 81.
    Marshall GM, Kwan E, Haber M, et al. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia. Leukemia. 1995;9:1847–1850.PubMedGoogle Scholar
  82. 82.
    Scrideli CA, Kashima S, Cipolloti R, Defavery R, Tone LG. Clonal evolution as the limiting factor in the detection of minimal residual disease by polymerase chain reaction in children in Brazil with acute lymphoid leukemia. J Pediatr Hematol Oncol. 2002;24:364–367.PubMedCrossRefGoogle Scholar
  83. 83.
    Steenbergen EJ, Verhagen OJ, Van Leeuwen EF, et al. Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood. 1993;82:581–589.PubMedGoogle Scholar
  84. 84.
    Lo Nigro L, Cazzaniga G, Di Cataldo A, et al. Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia. 1999;13:190–195.PubMedCrossRefGoogle Scholar
  85. 85.
    Choi Y, Greenberg SJ, Du TL, Ward PM, et al. Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous VH-VH gene replacements and VH-DJH gene rearrangements. Blood. 1996;87:2506–2512.PubMedGoogle Scholar
  86. 86.
    Height SE, Swanbury GJ, Matute E, et al. Analysis of clonal rearrangements of the Ig heavy chain locus in acute leukemia. Blood. 1996;87:5242–5250.PubMedGoogle Scholar
  87. 87.
    Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–3367.PubMedGoogle Scholar
  88. 88.
    Uckun FM, Herman-Hatten K, Crotty ML, et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood. 1998;92:810–821.PubMedGoogle Scholar
  89. 89.
    Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382–385.PubMedGoogle Scholar
  90. 90.
    Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001;2:409–417.PubMedCrossRefGoogle Scholar
  91. 91.
    Cimino G, Elia L, Rapanotti MC, et al. A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood. 2000;95:96–101.PubMedGoogle Scholar
  92. 92.
    Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J. Significantly lower relapse rate for TEL/AML1-positive ALL. Leukemia. 1999;13:1633.PubMedCrossRefGoogle Scholar
  93. 93.
    Kerst G, Kreyenberg H, Roth C, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol. 2005;128:774–782.PubMedCrossRefGoogle Scholar
  94. 94.
    Laughton SJ, Ashton LJ, Kwan E, Norris MD, Haber M, Marshall GM. Early responses to chemotherapy of normal and malignant hematologic cells are prognostic in children with acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2264–2271.PubMedCrossRefGoogle Scholar
  95. 95.
    Neale GA, Coustan-Smith E, Stow P, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004;18:934–938.PubMedCrossRefGoogle Scholar
  96. 96.
    Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790–794.PubMedGoogle Scholar
  97. 97.
    Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100:52–58.PubMedCrossRefGoogle Scholar
  98. 98.
    Taube T, Eckert C, Korner G, Henze G, Seeger K. Real-time quantification of TEL-AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia. Comparison with antigen receptor-based MRD quantification methods. Leuk Res. 2004;28:699–706.PubMedCrossRefGoogle Scholar
  99. 99.
    Bruggemann M, van der Velden VH, Raff T, et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia. 2004;18:709–719.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carlo Alberto Scrideli
    • 1
  • Giovanni Cazzaniga
    • 2
  • Andrea Biondi
    • 3
  1. 1.Department of Pediatrics, Ribeirão Preto Medical SchoolSão Paulo UniversityRibeirão Preto, São PauloBrazil
  2. 2.Centro Ricerca TettamantiClinica Pediatrica Universitá di Milano BicoccaMonzaItaly
  3. 3.Centro Ricerca M. TettamantiUniversità di Milano-BicoccaMonzaItaly

Personalised recommendations