Skip to main content

Abstract

Acute lymphoblastic leukemia (ALL) is a heterogeneous group of disorders that originates from B- and T-cell progenitors.1,2 Different B- and T-cell ALL can be recognized according to immunologic and molecular criteria.35 The identification of the molecular events underlying the process of leukemia transformation has provided not only important biological information,57 but also clinically relevant genetic markers for the identification of prognostically relevant ALL subgroups and for the molecular monitoring of minimal residual disease (MRD). For ALL, immunoglobulin (IG) and T-cell receptor (TCR) gene rearrangement studies are used as markers of clonality and for MRD detection, and the identification of different genetic variations is used to define different ALL subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pui CH. Childhood leukaemias. N Engl J Med. 1995;332:1618–1630.

    Article  PubMed  CAS  Google Scholar 

  2. Pui CH, Evans WE. Acute lymphoblastic leukaemias. N Engl J Med. 1998;339:605–615.

    Article  PubMed  CAS  Google Scholar 

  3. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry [review]. Cytometry. 1999;38:139–152.

    Article  PubMed  CAS  Google Scholar 

  4. Neale GA, Coustan-Smith E, Pan Q, et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 1999;13:1221–1226.

    Article  PubMed  CAS  Google Scholar 

  5. Yeoh EJ, Roos ME, Shurtleff AS, et al. Classification, subtype discovery, and prediction outcome in pediatric acute lymphoblastic leukemia by gene expression profile. Cancer Cell. 2002;1:133–143.

    Article  PubMed  CAS  Google Scholar 

  6. Pui CH, Behm FG, Crist WM. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood. 1993;82:343–362.

    PubMed  CAS  Google Scholar 

  7. Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143–149.

    Article  PubMed  CAS  Google Scholar 

  8. Cline MJ. The molecular basis of leukaemia. N Engl J Med. 1994;330:328–336.

    Article  PubMed  CAS  Google Scholar 

  9. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–581.

    Article  PubMed  CAS  Google Scholar 

  10. Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta. 1991;198:1–92.

    Article  PubMed  Google Scholar 

  11. Schwartz RS. Jumping genes and the immunoglobulin V gene system. N Engl J Med. Cambridge, UK, 1995;333:42–44.

    Article  PubMed  CAS  Google Scholar 

  12. Van Dongen JJM, Langerak AW. Immunoglobulin and T-cell receptor rearrangements. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:145–167.

    Google Scholar 

  13. Potter MN, Steward CG, Oakhill A. The significance of detection of minimal residual disease in childhood acute lymphoblastic leukemia. Br J Haematol. 1993;83:412–418.

    PubMed  CAS  Google Scholar 

  14. Van Dongen JJM, Szczepanski T, De Bruijn MAC, et al. Detection of minimal residual disease in acute leukemia patients. Cytokines Cell Mol Ther. 1996;2:121–133.

    Google Scholar 

  15. Yano T, Pullman A, Andade R, et al. A common Vd2-Dd2-Dd3 T cell receptor gene rearrangement in precursor B acute lymphoblastic leukemia. Br J Haematol. 1991;79:44–49.

    PubMed  CAS  Google Scholar 

  16. Brisco MJ, Tan LW, Orsborn AM, Morley AA. Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol. 1990;75:163–167.

    PubMed  CAS  Google Scholar 

  17. Scrideli CA, Simoes AL, Defavery R, Bernardes JE, Duarte MH, Tone LG. Childhood B lineage acute lymphoblastic leukemia clonality study by the polymerase chain reaction. J Pediatr Hematol Oncol. 1997;19:516–522.

    Article  PubMed  CAS  Google Scholar 

  18. Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized MRD detection in ALL using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:110–118.

    Article  PubMed  CAS  Google Scholar 

  19. Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991;198:93–174.

    Article  PubMed  Google Scholar 

  20. Szczepanski T, Beishuizen A, Pongers-Willemse MJ, et al. Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukaemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 1999;13:196–205.

    Article  PubMed  CAS  Google Scholar 

  21. Tkachuck DC, Griesser H, Takirara Y, et al. Rearrangement of T-cell delta locus in lymphoproliferative disorders. Blood. 1988;72:353–357.

    Google Scholar 

  22. Biondi A, Francia de Celli P, Rossi V, et al. High prevalence of T-cell receptor V delta 2-(D)-D delta 3 or D delta 1/2-D delta 3 rearrangements in B-precursor acute lymphoblastic leukemias. Blood. 1990;75:1834–1840.

    PubMed  CAS  Google Scholar 

  23. Trainor KJ, Brisco MJ, Wan JH, et al. Gene rearrangement in B-and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood. 1991;78:192–196.

    PubMed  CAS  Google Scholar 

  24. Campana D, Pui CH. Detection of minimal residual disease in acute leukaemia: methodological and clinical significance. Blood. 1995;85:1416–1434.

    PubMed  CAS  Google Scholar 

  25. Ghali DW, Panzer S, Fischer S, et al. Heterogeneity of the T cell receptor delta gene indicating subclone formation in acute precursor B cell leukemias. Blood. 1995;85:2795–2801.

    PubMed  CAS  Google Scholar 

  26. Szczepanki T, LangeraK AW, Wolvers-Tettero IL, et al. Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia. 1998;12:1081–1088.

    Article  Google Scholar 

  27. Szczepanski T, van der Velden VH, Hoogeveen PG, et al. Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lym-MPC3 phoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103:3798–3804.

    Article  PubMed  CAS  Google Scholar 

  28. Foroni L, Harrison CJ, Hoffbrand AV, Potter MN. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol. 1999;105:7–24.

    PubMed  CAS  Google Scholar 

  29. Yin JA, Tobal K. Detection of minimal residual disease in acute myeloid leukaemia: methodologies, clinical and biological significance. Br J Haematol. 1999;106:578–590.

    Article  PubMed  CAS  Google Scholar 

  30. Look AT. Oncogenic transcription factors in the human acute leukaemias. Science. 1997;278:1059–1064.

    Article  PubMed  CAS  Google Scholar 

  31. Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96:24–33.

    PubMed  CAS  Google Scholar 

  32. Cazzaniga G, Rossi V, Biondi A. Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol. 2002;15:21–35.

    Article  PubMed  CAS  Google Scholar 

  33. Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87:1211–1224.

    PubMed  CAS  Google Scholar 

  34. Privitera E, Luciano A, Ronchetti D, et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia. 1994;8:554–559.

    PubMed  CAS  Google Scholar 

  35. Cazzaniga G, Lanciotti M, Rossi V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119:445–453.

    Article  PubMed  CAS  Google Scholar 

  36. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–3356.

    PubMed  CAS  Google Scholar 

  37. Scrideli CA, Cazzaniga G, Fazio G, et al. Gene expression profile unravels significant differences between childhood and adult Ph+ acute lymphoblastic leukemia. Leukemia. 2003;17:2234–2237.

    Article  PubMed  CAS  Google Scholar 

  38. Schrappe M, Arico M, Harbott J, et al. Philadelphia chromosomepositive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood. 1998;92:2730–2741.

    PubMed  CAS  Google Scholar 

  39. Borkhardt A, Cazzaniga G, Viehmann S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood. 1997;90:571–577.

    PubMed  CAS  Google Scholar 

  40. Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10:1529–1530.

    PubMed  CAS  Google Scholar 

  41. Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood. 1998;91:1716–1722.

    PubMed  CAS  Google Scholar 

  42. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155:1479–1485.

    PubMed  CAS  Google Scholar 

  43. van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901–1928.

    Article  PubMed  Google Scholar 

  44. Cave H, van der Werff Ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med. 1998;339:591–598.

    Article  PubMed  CAS  Google Scholar 

  45. Biondi A, Valsecchi MG, Seriu T, et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM Study Group. Leukemia. 2000;14:1939–1943.

    Article  PubMed  CAS  Google Scholar 

  46. Van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–1738.

    Article  PubMed  Google Scholar 

  47. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318–2357

    Article  PubMed  CAS  Google Scholar 

  48. Scrideli CA, Kashima S, Cipolloti R, Defavery R, Bernardes JE, Tone LG. Minimal residual disease in Brazilian children with acute lymphoid leukemia: comparison of three detection methods by PCR. Leuk Res. 2002;26:431–438.

    Article  PubMed  Google Scholar 

  49. Scrideli CA, Queiroz RG, Bernardes JE, Valera ET, Tone LG. PCR detection of clonal IgH and TCR gene rearrangements at the end of induction as a non-remission criterion in children with ALL: comparison with standard morphologic analysis and risk group classification. Med Pediatr Oncol. 2003;41:10–16.

    Article  PubMed  Google Scholar 

  50. Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92:4072–4079.

    PubMed  CAS  Google Scholar 

  51. Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol. 1998;102:860–871.

    Article  PubMed  CAS  Google Scholar 

  52. Fardel S, Kurzrock R, Estrov Z. Minimal residual disease in hematologic disorders. Arch Pathol Lab Med. 1999;123:1030–1034.

    Google Scholar 

  53. Sklar J. Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol. 1991;1:1521–1523.

    Google Scholar 

  54. Cross NC. Quantitative PCR techniques and applications. Br J Haematol. 1995;89:693–697.

    Article  PubMed  CAS  Google Scholar 

  55. Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005;90:382–390.

    PubMed  CAS  Google Scholar 

  56. Verhagen OJ, Willemse MJ, Breunis WB, et al. Application of germline IgH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14:1426–1435.

    Article  PubMed  CAS  Google Scholar 

  57. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12:2006–2014.

    Article  PubMed  CAS  Google Scholar 

  58. Germano G, Rossi V, Poli A, et al. Use of T-cell receptor g germline “TaqMan” probes for the analysis of minimal residual disease in childhood T-ALL by Real-Time Quantitative PCR. Blood. 1999;94:204b

    Google Scholar 

  59. Willems P, Verhagen O, Segeren C, et al. Consensus strategy to quantitate malignant cells in myeloma patients is validated in a multicenter study. Belgium-Dutch Hematology-Oncology Group. Blood. 2000;96:63–70.

    PubMed  CAS  Google Scholar 

  60. Eckert C, Scrideli CA, Taube T, et al. Comparison between TaqMan and LightCycler technologies for quantification of minimal residual disease by using immunoglobulin and T-cell receptor genes consensus probes. Leukemia. 2003;17:2517–2524.

    Article  PubMed  CAS  Google Scholar 

  61. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17:1013–1034.

    Article  PubMed  CAS  Google Scholar 

  62. Hochhaus A, Weisser A, La Rosee P, et al. Detection and quantification of residual disease in chronic myelogenous leukaemia. Leukemia. 2000;14:998–1005.

    Article  PubMed  CAS  Google Scholar 

  63. Pallisgaard N, Clausen N, Schroder H, Hokland P. Rapid and sensitive minimal residual disease detection in acute leukaemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer. 1999;26:355–365.

    Article  PubMed  CAS  Google Scholar 

  64. Krauter J, Wattjes MP, Nagel S, et al. Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol. 1999;107:80–85.

    Article  PubMed  CAS  Google Scholar 

  65. Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe Against Cancer program. Leukemia. 2003;17:2474–2486

    Article  PubMed  CAS  Google Scholar 

  66. Guidal C, Vilmer E, Grandchamp B, Cave H. A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2002;16:762–764.

    Article  PubMed  CAS  Google Scholar 

  67. Landman-Parker J, Aubin J, Delabesse E, et al. Simplified strategies for minimal residual disease detection in B cell precursor acute lymphoblastic leukaemia. Br J Haematol. 1996;95:281–290.

    Article  PubMed  CAS  Google Scholar 

  68. Evans PA, Short MA, Owen RG, et al. Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16:3616–3627.

    PubMed  CAS  Google Scholar 

  69. Bottaro M, Berti E, Biondi A, et al. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood. 1994;83:3271–3278.

    PubMed  CAS  Google Scholar 

  70. Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382–385.

    PubMed  CAS  Google Scholar 

  71. Kitchingman GR, Mirro J, Stass S, et al. Biologic and prognostic significance of the presence of more than two mu heavy-chain genes in childhood acute lymphoblastic leukemia of B precursor cell origin. Blood. 1986;67:698–703.

    PubMed  CAS  Google Scholar 

  72. Kuang S, Gu L, Dong S, et al. Long-term follow-up of minimal residual disease in childhood acute lymphoblastic leukemia patients by polymerase chain reaction analysis of multiple clone-specific or malignancy-specific gene markers. Cancer Genet Cytogenet. 1996;88:110–117.

    Article  PubMed  CAS  Google Scholar 

  73. Green E, McConville CM, Powell JE, et al. Clonal diversity of Ig and T-cell-receptor gene rearrangements identifies a subset of childhood B-precursor acute lymphoblastic leukemia with increased risk of relapse. Blood. 1998;92:952–958.

    PubMed  CAS  Google Scholar 

  74. Scrideli CA, Defavery R, Bernardes JE, Tone LG. Prognostic significance of bi/oligoclonality in childhood acute lymphoblastic leukemia as determined by polymerase chain reaction. Sao Paulo Med J. 2001;119:175–180.

    Article  PubMed  CAS  Google Scholar 

  75. Brumpt C, Delabesse E, Beldjord K, et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood. 2000;96:2254–2261.

    PubMed  CAS  Google Scholar 

  76. Hara J, Benedict SH, Yumura K, Ha-Kawa K, Gelfand EW. Rearrangement of variable region T cell receptor γ genes in acute lymphoblastic leukemia. Vγ gene usage differs in mature and immature T cells. J Clin Invest. 1999;83:1277–1283.

    Article  Google Scholar 

  77. Beishuizen A, Verhoeven MA, Van Wering ER, et al. Analysis of Ig and T cell receptor genes in 40 childhood acute lymphoblastic leukemia at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood. 1994;83:2238–2247.

    PubMed  CAS  Google Scholar 

  78. Steward CG, Goulden NJ, Katz F, et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood. 1994;83:1355–1362.

    PubMed  CAS  Google Scholar 

  79. Scrideli CA, Queiroz RG, Kashima S, Sankarankutty BO, Tone LG. T cell receptor gamma (TCRG) gene rearrangements in Brazilian children with acute lymphoblastic leukemia: analysis and implications for the study of minimal residual disease. Leuk Res. 2004;28:267–273.

    Article  PubMed  CAS  Google Scholar 

  80. Campana D, Van Dongen JJM, Pui CH. Minimal residual disease. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:413–442.

    Google Scholar 

  81. Marshall GM, Kwan E, Haber M, et al. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia. Leukemia. 1995;9:1847–1850.

    PubMed  CAS  Google Scholar 

  82. Scrideli CA, Kashima S, Cipolloti R, Defavery R, Tone LG. Clonal evolution as the limiting factor in the detection of minimal residual disease by polymerase chain reaction in children in Brazil with acute lymphoid leukemia. J Pediatr Hematol Oncol. 2002;24:364–367.

    Article  PubMed  Google Scholar 

  83. Steenbergen EJ, Verhagen OJ, Van Leeuwen EF, et al. Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood. 1993;82:581–589.

    PubMed  CAS  Google Scholar 

  84. Lo Nigro L, Cazzaniga G, Di Cataldo A, et al. Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia. 1999;13:190–195.

    Article  PubMed  Google Scholar 

  85. Choi Y, Greenberg SJ, Du TL, Ward PM, et al. Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous VH-VH gene replacements and VH-DJH gene rearrangements. Blood. 1996;87:2506–2512.

    PubMed  CAS  Google Scholar 

  86. Height SE, Swanbury GJ, Matute E, et al. Analysis of clonal rearrangements of the Ig heavy chain locus in acute leukemia. Blood. 1996;87:5242–5250.

    PubMed  CAS  Google Scholar 

  87. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–3367.

    PubMed  CAS  Google Scholar 

  88. Uckun FM, Herman-Hatten K, Crotty ML, et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood. 1998;92:810–821.

    PubMed  CAS  Google Scholar 

  89. Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382–385.

    PubMed  CAS  Google Scholar 

  90. Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001;2:409–417.

    Article  PubMed  CAS  Google Scholar 

  91. Cimino G, Elia L, Rapanotti MC, et al. A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood. 2000;95:96–101.

    PubMed  CAS  Google Scholar 

  92. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J. Significantly lower relapse rate for TEL/AML1-positive ALL. Leukemia. 1999;13:1633.

    Article  PubMed  CAS  Google Scholar 

  93. Kerst G, Kreyenberg H, Roth C, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol. 2005;128:774–782.

    Article  PubMed  CAS  Google Scholar 

  94. Laughton SJ, Ashton LJ, Kwan E, Norris MD, Haber M, Marshall GM. Early responses to chemotherapy of normal and malignant hematologic cells are prognostic in children with acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2264–2271.

    Article  PubMed  CAS  Google Scholar 

  95. Neale GA, Coustan-Smith E, Stow P, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004;18:934–938.

    Article  PubMed  CAS  Google Scholar 

  96. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790–794.

    PubMed  CAS  Google Scholar 

  97. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100:52–58.

    Article  PubMed  CAS  Google Scholar 

  98. Taube T, Eckert C, Korner G, Henze G, Seeger K. Real-time quantification of TEL-AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia. Comparison with antigen receptor-based MRD quantification methods. Leuk Res. 2004;28:699–706.

    Article  PubMed  CAS  Google Scholar 

  99. Bruggemann M, van der Velden VH, Raff T, et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia. 2004;18:709–719.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scrideli, C.A., Cazzaniga, G., Biondi, A. (2007). Acute Lymphoblastic Leukemia. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics