Skip to main content

Abstract

The diagnostic entity of acute myeloid leukemia (AML) encompasses a heterogeneous group of diseases whose prognosis differs substantially according to the nature of the underlying molecular lesion and the age of the patient. AML is predominantly a disease of the elderly with a dramatic increase in incidence in individuals over 60 years of age. Traditionally, cases of AML have been classified as primary (de novo) or secondary depending on the absence or presence of recognized predisposing factors (see Table 30-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimwade D. The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14:497–529.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.

    Article  PubMed  CAS  Google Scholar 

  3. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3:89–101.

    Article  PubMed  CAS  Google Scholar 

  4. Mueller BU, Pabst T, Osato M, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. 2002;100:998–1007.

    Article  PubMed  CAS  Google Scholar 

  5. Kottaridis PD, Gale RE, Linch DC. Flt3 mutations and leukaemia. Br J Haematol. 2003;122:523–538.

    Article  PubMed  CAS  Google Scholar 

  6. Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood. 2002;100:3423–3425.

    Article  PubMed  CAS  Google Scholar 

  7. Bain BJ. Leukaemia Diagnosis. 3rd ed. Oxford: Blackwell Publishing; 2003.

    Google Scholar 

  8. Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717–2723.

    Article  PubMed  CAS  Google Scholar 

  9. Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–152.

    Article  PubMed  CAS  Google Scholar 

  10. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.

    Article  PubMed  CAS  Google Scholar 

  11. Loh ML, Reynolds MG, Vattikuti S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia. 2004;18:1831–1834.

    Article  PubMed  CAS  Google Scholar 

  12. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. NEngl J Med. 2005;352:254–266.

    Article  CAS  Google Scholar 

  13. Döner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics—interaction with other gene mutations. Blood. 2005;106:3740–3746.

    Article  Google Scholar 

  14. Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–3739.

    Article  PubMed  CAS  Google Scholar 

  15. Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001.

    Google Scholar 

  16. Grimwade D, Biondi A, Mozziconacci M-J, et al. Characterization of acute promyelocytic leukemia cases lacking the classical t(15;17): results of the European working party. Blood. 2000;96:1297–1308.

    PubMed  CAS  Google Scholar 

  17. Grimwade D. Screening for core binding factor gene rearrangements in acute myeloid leukemia. Leukemia. 2002;16:964–969.

    Article  PubMed  CAS  Google Scholar 

  18. San Miguel JF, Vidriales MB, Orfã A. Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Best Pract Res Clin Haematol. 2002;15:105–118.

    Article  PubMed  Google Scholar 

  19. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood. 1999;93:4131–4143.

    PubMed  CAS  Google Scholar 

  20. Gale RE, Hills R, Kottaridis PD, et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients excluding acute promyelocytic leukemia from the UK MRC AML10 and 12 trials. Blood. 2005:106:3658–3665.

    Article  PubMed  CAS  Google Scholar 

  21. Barjesteh van Waalwijk van Doorn-Khosravani S, Erpelinck C, van Putten WLJ, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101:837–845.

    Article  Google Scholar 

  22. Bowen DT, Frew ME, Hills R, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients <60 years. Blood. 2005:106:2113–2119.

    Article  PubMed  CAS  Google Scholar 

  23. Fröling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22:624–633.

    Article  Google Scholar 

  24. Liu Yin JA, Grimwade D. Minimal residual disease evaluation in acute myeloid leukaemia. Lancet. 2002;360:160–162.

    Article  Google Scholar 

  25. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21:4642–4649.

    Article  PubMed  Google Scholar 

  26. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104:3078–3085.

    Article  PubMed  CAS  Google Scholar 

  27. Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–1973.

    Article  PubMed  CAS  Google Scholar 

  28. van Dongen JJM, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999;13:1901–1928.

    Article  PubMed  Google Scholar 

  29. Gabert JA, Beillard E, van der Velden VHJ, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318–2357.

    Article  PubMed  CAS  Google Scholar 

  30. Flora R, Grimwade D. Real-time quantitative RT-PCR to detect fusion gene transcripts associated with AML. Methods Mol Med. 2004;91:151–173.

    PubMed  CAS  Google Scholar 

  31. Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPMI) gene mutation. Leukemia. 2006;20:1103–1108.

    Article  PubMed  CAS  Google Scholar 

  32. Chou WC, Tang TL, Lin LI, et al. Nucleophosmin mutation in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res. 2006;66:3310–3316.

    Article  PubMed  CAS  Google Scholar 

  33. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100:2393–2398.

    Article  PubMed  CAS  Google Scholar 

  34. Bullinger L, Döner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–1616.

    Article  PubMed  CAS  Google Scholar 

  35. Valk PJM, Verhaak RGW, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–1628.

    Article  PubMed  CAS  Google Scholar 

  36. Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106:1189–1198.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grimwade, D. (2007). Acute Myeloid Leukemia. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics