Advertisement

Acute Myeloid Leukemia

  • David Grimwade
Chapter

Abstract

The diagnostic entity of acute myeloid leukemia (AML) encompasses a heterogeneous group of diseases whose prognosis differs substantially according to the nature of the underlying molecular lesion and the age of the patient. AML is predominantly a disease of the elderly with a dramatic increase in incidence in individuals over 60 years of age. Traditionally, cases of AML have been classified as primary (de novo) or secondary depending on the absence or presence of recognized predisposing factors (see Table 30-1).

Keywords

Acute Myeloid Leukemia Reverse Transcription Polymerase Chain Reaction Minimal Residual Disease NPM1 Mutation Myeloid Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grimwade D. The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14:497–529.PubMedCrossRefGoogle Scholar
  2. 2.
    Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3:89–101.PubMedCrossRefGoogle Scholar
  4. 4.
    Mueller BU, Pabst T, Osato M, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. 2002;100:998–1007.PubMedCrossRefGoogle Scholar
  5. 5.
    Kottaridis PD, Gale RE, Linch DC. Flt3 mutations and leukaemia. Br J Haematol. 2003;122:523–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood. 2002;100:3423–3425.PubMedCrossRefGoogle Scholar
  7. 7.
    Bain BJ. Leukaemia Diagnosis. 3rd ed. Oxford: Blackwell Publishing; 2003.Google Scholar
  8. 8.
    Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717–2723.PubMedCrossRefGoogle Scholar
  9. 9.
    Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–152.PubMedCrossRefGoogle Scholar
  10. 10.
    Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.PubMedCrossRefGoogle Scholar
  11. 11.
    Loh ML, Reynolds MG, Vattikuti S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia. 2004;18:1831–1834.PubMedCrossRefGoogle Scholar
  12. 12.
    Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. NEngl J Med. 2005;352:254–266.CrossRefGoogle Scholar
  13. 13.
    Döner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics—interaction with other gene mutations. Blood. 2005;106:3740–3746.CrossRefGoogle Scholar
  14. 14.
    Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–3739.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001.Google Scholar
  16. 16.
    Grimwade D, Biondi A, Mozziconacci M-J, et al. Characterization of acute promyelocytic leukemia cases lacking the classical t(15;17): results of the European working party. Blood. 2000;96:1297–1308.PubMedGoogle Scholar
  17. 17.
    Grimwade D. Screening for core binding factor gene rearrangements in acute myeloid leukemia. Leukemia. 2002;16:964–969.PubMedCrossRefGoogle Scholar
  18. 18.
    San Miguel JF, Vidriales MB, Orfã A. Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Best Pract Res Clin Haematol. 2002;15:105–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood. 1999;93:4131–4143.PubMedGoogle Scholar
  20. 20.
    Gale RE, Hills R, Kottaridis PD, et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients excluding acute promyelocytic leukemia from the UK MRC AML10 and 12 trials. Blood. 2005:106:3658–3665.PubMedCrossRefGoogle Scholar
  21. 21.
    Barjesteh van Waalwijk van Doorn-Khosravani S, Erpelinck C, van Putten WLJ, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101:837–845.CrossRefGoogle Scholar
  22. 22.
    Bowen DT, Frew ME, Hills R, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients <60 years. Blood. 2005:106:2113–2119.PubMedCrossRefGoogle Scholar
  23. 23.
    Fröling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22:624–633.CrossRefGoogle Scholar
  24. 24.
    Liu Yin JA, Grimwade D. Minimal residual disease evaluation in acute myeloid leukaemia. Lancet. 2002;360:160–162.CrossRefGoogle Scholar
  25. 25.
    Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21:4642–4649.PubMedCrossRefGoogle Scholar
  26. 26.
    Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104:3078–3085.PubMedCrossRefGoogle Scholar
  27. 27.
    Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–1973.PubMedCrossRefGoogle Scholar
  28. 28.
    van Dongen JJM, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999;13:1901–1928.PubMedCrossRefGoogle Scholar
  29. 29.
    Gabert JA, Beillard E, van der Velden VHJ, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318–2357.PubMedCrossRefGoogle Scholar
  30. 30.
    Flora R, Grimwade D. Real-time quantitative RT-PCR to detect fusion gene transcripts associated with AML. Methods Mol Med. 2004;91:151–173.PubMedGoogle Scholar
  31. 31.
    Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPMI) gene mutation. Leukemia. 2006;20:1103–1108.PubMedCrossRefGoogle Scholar
  32. 32.
    Chou WC, Tang TL, Lin LI, et al. Nucleophosmin mutation in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res. 2006;66:3310–3316.PubMedCrossRefGoogle Scholar
  33. 33.
    Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100:2393–2398.PubMedCrossRefGoogle Scholar
  34. 34.
    Bullinger L, Döner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–1616.PubMedCrossRefGoogle Scholar
  35. 35.
    Valk PJM, Verhaak RGW, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–1628.PubMedCrossRefGoogle Scholar
  36. 36.
    Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106:1189–1198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David Grimwade
    • 1
  1. 1.Cancer Genetics Lab, Department of Genetics, Guy’s, King’s and St. Thomas’ School of Medicine, Guy’s TowerGuy’s HospitalLondonEngland

Personalised recommendations