• Giovanni Tallini
  • Pei Hui


Oncologic molecular pathology focuses on identifying and understanding molecular and genetic alterations underlying the development and progression of neoplastic processes. Mesenchymal malignancies may be classified into two pathogenetic types: sarcomas with complex genetic alterations and sarcomas with specific recurrent chromosomal translocations. The first type includes the majority of high-grade, pleomorphic mesenchymal malignancies that are characterized by complex chromosomal abnormalities, for example, malignant fibrous histiocytoma (MFH), osteogenic sarcoma, and embryonal rhabdomyosarcoma. In the second type, the sarcomas are translocation specific, that is, harboring a recurrent chromosomal translocation leading to an in-frame fusion of coding sequences from each of the two rearranged genes. The translocation results in the production of a chimeric transcript encoding a fusion protein with oncogenic activity. Histologically, the translocation-specific sarcomas are generally a monomorphic proliferation of neoplastic cells. This pathogenetic classification appears biologically relevant and is best illustrated by the sarcoma types observed in Li-Fraumeni syndrome and therapy-related malignancies.


Synovial Sarcoma Soft Tissue Tumor Fusion Transcript Clear Cell Sarcoma Myxoid Liposarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kleihues P, Schauble B, zur Hausen A, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150:1–13.PubMedGoogle Scholar
  2. 2.
    Ladanyi M, Bridge JA. Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol. 2000;31:532–538.PubMedCrossRefGoogle Scholar
  3. 3.
    Bennicelli JL, Barr FG. Chromosomal translocations and sarcomas. Curr Opin Oncol. 2002;14:412–419.PubMedCrossRefGoogle Scholar
  4. 4.
    Coffin CM, Patel A, Perkins S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14:569–576.PubMedCrossRefGoogle Scholar
  5. 5.
    Simon MP, Pedeutour F, Sirbent N, et al. Deregulation of the platelet-derived growth factor beta-chain via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant cell fibroblastoma. Nat Genet. 1997;15:95–98.PubMedCrossRefGoogle Scholar
  6. 6.
    Greco A, Roccato E, Miranda C, et al. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1-PDGFB rearrangement. Int J Cancer. 2001;92:354–360.PubMedCrossRefGoogle Scholar
  7. 7.
    Ladanyi M, Lui MY, Antonescu CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fused the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Koontz JI, Soreng AL, Nucci M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98:6348–6352.PubMedCrossRefGoogle Scholar
  9. 9.
    Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med. 2003;138:560–570.PubMedGoogle Scholar
  10. 10.
    Rosai J, Akerman M, Dal Cin P, et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors: evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP study group). Am J Surg Pathol. 1996;20:1182–1189.PubMedCrossRefGoogle Scholar
  11. 11.
    Fletcher CDM, Fletcher JA, Cin PD, et al. Diagnostic gold standard for soft tissue tumors: morphology or molecular genetics? Histopathology. 2001;39:100–103.PubMedCrossRefGoogle Scholar
  12. 12.
    Ladanyi M. Diagnosis and classification of small round-cell tumors of childhood. Am J Pathol. 1999;155:2181–2182.PubMedGoogle Scholar
  13. 13.
    Rossow KL, Janknecht R. The Ewing’s sarcoma gene product functions as a transcriptional activator. Cancer Res. 2001;61:2690–2695.PubMedGoogle Scholar
  14. 14.
    Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia MA, et al. Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical role in the pathogenesis of liposarcoma. Oncogene. 2000;19:6015–6022.PubMedCrossRefGoogle Scholar
  15. 15.
    Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20:5736–5746.PubMedCrossRefGoogle Scholar
  16. 16.
    Barr FG, Chatten J, D’Cruz CL, et al. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 1995;273:553–557.PubMedCrossRefGoogle Scholar
  17. 17.
    Bridge JA, Sandberg AA. Cytogenetic and molecular genetic techniques as adjunctive approaches in the diagnosis of bone and soft tissue tumors. Skeletal Radiol. 2000;29:249–258.PubMedCrossRefGoogle Scholar
  18. 18.
    Adem C, Gisselsson D, Dal Cin P, et al. EVT6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 2001;14:1246–1251.PubMedCrossRefGoogle Scholar
  19. 19.
    Hui P, Howe G, Crouch J, et al. Real-time RT-PCR of cyclin D1 mRNA in mantle cell lymphoma: comparison with FISH and immunohistochemistry. Leuk Lymphoma. 2003;44:1385–1394.PubMedCrossRefGoogle Scholar
  20. 20.
    Athale UH, Shurtleff SA, Jenkins JJ, et al. Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor; Am J Pediatr Hematol Oncol. 2001;23:99–104.CrossRefGoogle Scholar
  21. 21.
    Dagher R, Pham RA, Sorbara L, et al. Molecular confirmation of Ewing’s sarcoma. Am J Pediatr Hematol Oncol. 2001;23:221–224.CrossRefGoogle Scholar
  22. 22.
    Guillou L, Coindre J, Gallaghr G, et al. Detection of the synovial sarcoma translocation t(X;18)(SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists: a molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32:105–112.PubMedCrossRefGoogle Scholar
  23. 23.
    Sorensen PH, Lessnick SL, Lopez-Terrada D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–151.PubMedCrossRefGoogle Scholar
  24. 24.
    Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods. 2001;25:386–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Cummings TJ, Brown NM, Stenzel TT. TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Ann Clin Lab Sci. 2002;32:219–224.PubMedGoogle Scholar
  26. 26.
    Hill DA, Riedley SE, Patel AR, Shurtleff SA, et al. Real-time polymerase chain reaction as an aid for the detection of SYT-SSX1 and SYT-SSX2 transcripts in fresh and archival pediatric synovial sarcoma specimens: report of 25 cases from St. Jude Children’s Research Hospital. Pediatr Dev Pathol. 2003;6:24–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Peter M, Gilbert E, Delattre O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab Invest. 2001;81:905–912.PubMedGoogle Scholar
  28. 28.
    Hoestein I, Menard A, Bui BN, et al. Molecular detection of the synovial sarcoma translocation t(X;18) by real-time polymerase chain reaction in paraffin-embedded material. Diagn Mol Pathol. 2002;11:16–21.CrossRefGoogle Scholar
  29. 29.
    Kumar S, Perlman E, Pack S, et al. Absence of EWS/FLI1 fusion in olfactory neuroblastomas indicates these tumors do not belong to the Ewing’s sarcoma family. Hum Pathol. 1999;30:1356–1360.PubMedCrossRefGoogle Scholar
  30. 30.
    Parham DM, Shapiro DN, Downing JR, et al. Solid alveolar rhabdomyosarcomas with the t(2;13). Report of two cases with diagnostic implications. Am J Surg Pathol. 1994;18:474–478.PubMedCrossRefGoogle Scholar
  31. 31.
    Knight JC, Renwick PJ, Cin PD, et al. Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 1995;55:24–27.PubMedGoogle Scholar
  32. 32.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet. 2003;140:1–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998;338:153–160.PubMedCrossRefGoogle Scholar
  34. 34.
    Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multiinstitutional retrospective study of 243 patients. Cancer Res. 2002;62:135–140.PubMedGoogle Scholar
  35. 35.
    Anderson J, Gordon T, McManus A, et al. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer. 2001;85:831–835.PubMedCrossRefGoogle Scholar
  36. 36.
    Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2002;20:2672–2679.PubMedCrossRefGoogle Scholar
  37. 37.
    Fidelia-Lambert MN, Zhuang Z, Tsokos M. Sensitive detection of rare Ewing’s sarcoma cells in peripheral blood by reverse transcriptase polymerase chain reaction. Hum Pathol. 1999;30:78–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Sumerauer D. Vicha A, Kucerova H, et al. Detection of minimal bone marrow infiltration in patients with localized and metastatic Ewing sarcoma using RT-PCR. Folia Biol. 2001;47:206–210.Google Scholar
  39. 39.
    Schleiermacher G, Delattre O. Detection of micrometastases and circulating tumor cells using molecular biology techniques in solid tumors. Bull Cancer. 2001;88:561–570.PubMedGoogle Scholar
  40. 40.
    Worley BS, Van den Broekes LT, Goletz TJ, et al. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res. 2001;61:6868–6875.PubMedGoogle Scholar
  41. 41.
    Van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours. A phase I study. Lancet. 2001;358:1421–1423.PubMedCrossRefGoogle Scholar
  42. 42.
    Sjoblom T, Shimizu A, O’Brien KP, et al. Growth inhibition of dermatofibrosarcoma protuberant tumors by the platelet-derived growth factor antagonist STI571 though induction of apoptosis. Cancer Res. 2001;61:5778–5783.PubMedGoogle Scholar
  43. 43.
    Simeoni F, Morris MC, Heitz F, et al. Into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31:2717–2724.PubMedCrossRefGoogle Scholar
  44. 44.
    Tanaka K, Iwakuma T, Harimaya K, et al. EWS-FLI-1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997;99:239–247.PubMedCrossRefGoogle Scholar
  45. 45.
    Uchida A, Seto M, Hashimoto N, et al. Molecular diagnosis and gene therapy in musculoskeletal tumors. J Orthop Sci. 2000;5:418–423.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Giovanni Tallini
    • 1
    • 2
  • Pei Hui
    • 3
  1. 1.Department of Pathology and Attending PathologistBologna University School of MedicineBologna
  2. 2.Diagnostic Molecular Pathology LaboratoryOspedale BellariaBolognaItaly
  3. 3.Molecular Diagnostics Laboratory, Department of PathologyYale University Schnool of MedicineNew HavenUSA

Personalised recommendations