Advertisement

Urothelial Carcinoma

  • Kevin C. Halling
Chapter
  • 1.7k Downloads

Abstract

The two main types of urothelial carcinoma (UC) are papillary UC (pTa) and “flat” UC (pTis), also known as noninvasive carcinoma in situ. Approximately 75% to 80% of UC are papillary and approximately 20% to 25% are CIS. Papillary tumors tend to recur but not progress to invasive cancer. CIS is aggressive and tends to progress to muscleinvasive cancer.

Keywords

Bladder Cancer Urothelial Carcinoma Microsatellite Analysis Allelic Imbalance Urine Cytology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bittard H, Lamy B, Billery C. Clinical evaluation of cell deoxyribonucleic acid content measured by flow cytometry in bladder cancer. J Urol. 1996;155:1887–1891.PubMedCrossRefGoogle Scholar
  2. 2.
    Richter J, Jiang F, Gorog JP, et al. Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res. 1997;57:2860–2864.PubMedGoogle Scholar
  3. 3.
    Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of bladder cancer. J Urol. 2000;164:1768–1775.PubMedCrossRefGoogle Scholar
  4. 4.
    Dalbagni G, Presti J, Reuter V, Fair WR, Cordon-Cardo C. Genetic alterations in bladder cancer. Lancet. 1993;342:469–471.PubMedCrossRefGoogle Scholar
  5. 5.
    Knowles MA, Elder PA, Williamson M, Cairns JP, Shaw ME, Law MG. Allelotype of human bladder cancer. Cancer Res. 1994;54:531–538.PubMedGoogle Scholar
  6. 6.
    Rosin MP, Cairns P, Epstein JI, Schoenberg MP, Sidransky D. Partial allelotype of carcinoma in situ of the human bladder. Cancer Res. 1995;55:5213–5216.PubMedGoogle Scholar
  7. 7.
    Cairns P, Shaw ME, Knowles MA. Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene. 1993;8:1083–1085.PubMedGoogle Scholar
  8. 8.
    Ruppert JM, Tokino K, Sidransky D. Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res. 1993;53:5093–5095.PubMedGoogle Scholar
  9. 9.
    Esrig D, Spruck CH, Nichols PW, et al. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol. 1993;143:1389–1397.PubMedGoogle Scholar
  10. 10.
    Tsutsumi M, Sugano K, Yamaguchi K, Kakizoe T, Akaza H. Correlation of allelic loss of the P53 gene and tumor grade, stage, and malignant progression in bladder cancer. Int J Urol. 1997;4:74–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Gonzalez-Zulueta M, Ruppert JM, Tokino K, et al. Microsatellite instability in bladder cancer. Cancer Res. 1993;53:5620–5623.PubMedGoogle Scholar
  12. 12.
    Hartmann A, Zanardo L, Bocker-Edmonston T, et al. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res. 2002;62:6796–6802.PubMedGoogle Scholar
  13. 13.
    Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001;1:109–117.PubMedCrossRefGoogle Scholar
  14. 14.
    Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158:1955–1959.PubMedGoogle Scholar
  15. 15.
    Sauter G, Mihatsch MJ. Pussycats and baby tigers: non-invasive (pTa) and minimally invasive (pT1) bladder carcinomas are not the same. J Pathol. 1998;185:339–341.PubMedCrossRefGoogle Scholar
  16. 16.
    Dalquen P, Kleiber B, Grilli B, Herzog M, Bubendorf L, Oberholzer M. DNA image cytometry and fluorescence in situ hybridization for noninvasive detection of urothelial tumors in voided urine. Cancer Cytopathol. 2002;96:374–379.Google Scholar
  17. 17.
    Cajulis RS, Haines GK, Frias-Hidvegi D, McVary K, Bacus JW. Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluorescence in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Diagn Cytopathol. 1995;13:214–223.PubMedCrossRefGoogle Scholar
  18. 18.
    Sokolova IA, Halling KC, Jenkins RB. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116–123.PubMedGoogle Scholar
  19. 19.
    Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol. 2001;116:79–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Skacel M, Fahmy M, Brainard JA, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169:2101–2105.PubMedCrossRefGoogle Scholar
  21. 21.
    Sarosdy MF, Schellhammer P, Bokinsky G, et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol. 2002;168:1950–1954.PubMedCrossRefGoogle Scholar
  22. 22.
    Glas AS, Roos D, Deutekom M, Zwinderman AH, Bossuyt PM, Kurth KH. Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J Urol. 2003;169:1975–1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Mao L, Schoenberg MP, Scicchitano M, et al. Molecular detection of primary bladder cancer by microsatellite analysis. Science. 1996;271:659–662.PubMedCrossRefGoogle Scholar
  24. 24.
    Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D. Detection of bladder cancer recurrence by microsatellite analysis of urine. Nat Med. 1997;3:621–624.PubMedCrossRefGoogle Scholar
  25. 25.
    van Rhijn BW, Lurkin I, Kirkels WJ, van der Kwast TH, Zwarthoff EC. Microsatellite analysis—DNA test in urine competes with cys-toscopy in follow-up of superficial bladder carcinoma: a phase II trial. Cancer. 2001;92:768–775.PubMedCrossRefGoogle Scholar
  26. 26.
    Amira N, Mourah S, Rozet F, et al. Non-invasive molecular detection of bladder cancer recurrence. Int J Cancer. 2002;101:293–297.PubMedCrossRefGoogle Scholar
  27. 27.
    Utting M, Werner W, Dahse R, Schubert J, Junker K. Microsatellite analysis of free tumor DNA in urine, serum, and plasma of patients: a minimally invasive method for the detection of bladder cancer. Clin Cancer Res. 2002;8:35–40.PubMedGoogle Scholar
  28. 28.
    Seripa D, Parrella P, Gallucci M, et al. Sensitive detection of transitional cell carcinoma of the bladder by microsatellite analysis of cells exfoliated in urine. Int J Cancer. 2001;95:364–369.PubMedCrossRefGoogle Scholar
  29. 29.
    Christensen M, Wolf H, Orntoft TF. Microsatellite alterations in urinary sediments from patients with cystitis and bladder cancer. Int J Cancer. 2000;85:614–617.PubMedCrossRefGoogle Scholar
  30. 30.
    van Rhijn BW, Lurkin I, Chopin DK, et al. Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res. 2003;9:257–263.PubMedGoogle Scholar
  31. 31.
    Halling KC, King W, Sokolova IA, et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol. 2002;167:2001–2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Neves M, Ciofu C, Larousserie F, et al. Prospective evaluation of genetic abnormalities and telomerase expression in exfoliated urinary cells for bladder cancer detection. J Urol. 2002;167:1276–1281.PubMedCrossRefGoogle Scholar
  33. 33.
    Kinoshita H, Ogawa O, Kakehi Y, et al. Detection of telomerase activity in exfoliated cells in urine from patients with bladder cancer. J Natl Cancer Inst. 1997;89:724–730.PubMedCrossRefGoogle Scholar
  34. 34.
    Ito H, Kyo S, Kanaya T. Detection of human telomerase reverse transcriptase messenger RNA in voided urine samples as a useful diagnostic tool for bladder cancer. Clin Cancer Res. 1998;4:2807–2810.PubMedGoogle Scholar
  35. 35.
    Muller M, Krause H, Heicappell R, Tischendorf J, Shay JW, Miller K. Comparison of human telomerase RNA and telomerase activity in urine for diagnosis of bladder cancer. Clin Cancer Res. 1998;4:1949–1954.PubMedGoogle Scholar
  36. 36.
    Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015.PubMedCrossRefGoogle Scholar
  37. 37.
    Heine B, Hummel M, Muller M, Heicappell R, Miller K, Stein H. Non-radioactive measurement of telomerase activity in human bladder cancer, bladder washings, and in urine. J Pathol. 1998;184:71–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Ramakumar S, Bhuiyan J, Besse JA, et al. Comparison of screening methods in the detection of bladder cancer. J Urol. 1999;161:388–394.PubMedCrossRefGoogle Scholar
  39. 39.
    van Rhijn BW, Montironi R, Zwarthoff EC, Jobsis AC, van der Kwast TH. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198:245–251.PubMedCrossRefGoogle Scholar
  40. 40.
    Uchida T, Wada C, Ishida H, et al. p53 mutations and prognosis in bladder tumors. J Urol. 1995;153:1097–1104.PubMedCrossRefGoogle Scholar
  41. 41.
    Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 1994;331:1259–1264.PubMedCrossRefGoogle Scholar
  42. 42.
    Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst. 1993;85:53–59.PubMedCrossRefGoogle Scholar
  43. 43.
    Shariat SF, Weizer AZ, Green A, et al. Prognostic value of P53 nuclear accumulation and histopathologic features in T1 transitional cell carcinoma of the urinary bladder. Urology. 2000;56:735–740.PubMedCrossRefGoogle Scholar
  44. 44.
    Sidransky D, Von Eschenbach A, Tsai YC, et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science. 1991;252:706–709.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC. Urine detection of survivin and diagnosis of bladder cancer. JAMA. 2001;285:324–328.PubMedCrossRefGoogle Scholar
  46. 46.
    Brockmoller J, Cascorbi I, Kerb R, Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–3925.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kevin C. Halling
    • 1
  1. 1.Clinical Molecular Genetics and Molecular Cytology Laboratories, Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations